論文の概要: Cell Attention Networks
- arxiv url: http://arxiv.org/abs/2209.08179v1
- Date: Fri, 16 Sep 2022 21:57:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 16:13:55.387143
- Title: Cell Attention Networks
- Title(参考訳): 細胞注意ネットワーク
- Authors: Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo,
Stefania Sardellitti, Sergio Barbarossa
- Abstract要約: グラフの頂点上で定義されたデータを操作するニューラルネットワークであるCell Attention Networks (CANs)を紹介する。
CANは、細胞複合体にコードされているように、下部と上部の地区を利用して、2つの独立したマスク付き自己保持機構を設計する。
実験結果から,CANはグラフベースの学習課題における技術結果と同等に比較可能な,低複雑性戦略であることが示唆された。
- 参考スコア(独自算出の注目度): 25.72671436731666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since their introduction, graph attention networks achieved outstanding
results in graph representation learning tasks. However, these networks
consider only pairwise relationships among nodes and then they are not able to
fully exploit higher-order interactions present in many real world data-sets.
In this paper, we introduce Cell Attention Networks (CANs), a neural
architecture operating on data defined over the vertices of a graph,
representing the graph as the 1-skeleton of a cell complex introduced to
capture higher order interactions. In particular, we exploit the lower and
upper neighborhoods, as encoded in the cell complex, to design two independent
masked self-attention mechanisms, thus generalizing the conventional graph
attention strategy. The approach used in CANs is hierarchical and it
incorporates the following steps: i) a lifting algorithm that learns {\it edge
features} from {\it node features}; ii) a cell attention mechanism to find the
optimal combination of edge features over both lower and upper neighbors; iii)
a hierarchical {\it edge pooling} mechanism to extract a compact meaningful set
of features. The experimental results show that CAN is a low complexity
strategy that compares favorably with state of the art results on graph-based
learning tasks.
- Abstract(参考訳): 導入後、グラフアテンションネットワークはグラフ表現学習タスクにおいて優れた結果を得た。
しかし、これらのネットワークはノード間の対関係のみを考慮するため、多くの現実世界のデータセットに存在する高次相互作用を十分に活用できない。
本稿では,グラフの頂点上で定義されたデータを操作するニューラルネットワークであるCell Attention Networks (CANs)を紹介し,そのグラフを高次相互作用を捉えるために導入されたセル複合体の1-骨格として表現する。
特に,細胞複合体に符号化された下層および上層地区を利用して2つの独立したマスキング自己注意機構を設計し,従来のグラフ注意戦略を一般化する。
cansで使用されるアプローチは階層的であり、以下のステップを組み込んでいる。
一 ノードの特徴から、エッジの特徴を学習する昇降アルゴリズム
二 下近傍及び上近傍の両端の特徴の最適な組み合わせを見つけるための細胞注意機構
三 コンパクトで有意義な特徴の集合を抽出するための階層的「itエッジプーリング」機構
実験の結果,canはグラフベースの学習タスクにおける技術結果と好適に比較可能な,低複雑性戦略であることがわかった。
関連論文リスト
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
SSA-GCN(Semantic-structure attention-enhanced graph convolutional Network)を導入する。
グラフ構造をモデル化するだけでなく、分類性能を高めるために一般化されていない特徴を抽出する。
Cora と CiteSeer のデータセットに対する実験により,提案手法による性能改善が実証された。
論文 参考訳(メタデータ) (2024-03-24T06:28:54Z) - Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation [35.42514739566419]
TopoAugは、生データから直接仮想ハイパーエッジを構築することで、元のグラフから複合体を構築する新しいグラフ拡張手法である。
ソーシャルメディア,生物学,eコマースなど,さまざまな領域にまたがる23の新たな実世界のグラフデータセットを提供する。
我々の実証研究は、TopoAugがGNNベースラインや他のグラフ拡張手法を一貫して、著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-02-20T14:18:43Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Generalized Simplicial Attention Neural Networks [22.171364354867723]
我々はGSAN(Generalized Simplicial Attention Neural Networks)を紹介する。
GSANは、マスク付き自己意図層を用いて、単純な複合体に生きるデータを処理する。
これらのスキームは、タスク指向の方法で、連続した順序の隣り合う単純さに関連するデータを組み合わせる方法を学ぶ。
論文 参考訳(メタデータ) (2023-09-05T11:29:25Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
グラフ表現学習に自己教師付き学習機構を導入する。
本稿では,新しい自己教師型コンセンサス表現学習フレームワークを提案する。
提案手法はトポロジグラフと特徴グラフの2つの視点からグラフを扱う。
論文 参考訳(メタデータ) (2021-08-10T07:53:09Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。