論文の概要: Can segmentation models be trained with fully synthetically generated
data?
- arxiv url: http://arxiv.org/abs/2209.08256v1
- Date: Sat, 17 Sep 2022 05:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 18:03:33.589126
- Title: Can segmentation models be trained with fully synthetically generated
data?
- Title(参考訳): セグメンテーションモデルは、完全に合成されたデータで訓練できるのか?
- Authors: Virginia Fernandez (1), Walter Hugo Lopez Pinaya (1), Pedro Borges
(1), Petru-Daniel Tudosiu (1), Mark S Graham (1), Tom Vercauteren (1), M
Jorge Cardoso ((1) King's College London)
- Abstract要約: BrainSPADEは、合成拡散ベースのラベルジェネレータとセマンティックイメージジェネレータを組み合わせたモデルである。
本モデルでは, 興味の病理の有無に関わらず, オンデマンドで完全合成脳ラベルを作成でき, 任意のガイド型MRI画像を生成することができる。
brainSPADE合成データは、実際のデータでトレーニングされたモデルに匹敵するパフォーマンスでセグメンテーションモデルをトレーニングするために使用できる。
- 参考スコア(独自算出の注目度): 0.39577682622066246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to achieve good performance and generalisability, medical image
segmentation models should be trained on sizeable datasets with sufficient
variability. Due to ethics and governance restrictions, and the costs
associated with labelling data, scientific development is often stifled, with
models trained and tested on limited data. Data augmentation is often used to
artificially increase the variability in the data distribution and improve
model generalisability. Recent works have explored deep generative models for
image synthesis, as such an approach would enable the generation of an
effectively infinite amount of varied data, addressing the generalisability and
data access problems. However, many proposed solutions limit the user's control
over what is generated. In this work, we propose brainSPADE, a model which
combines a synthetic diffusion-based label generator with a semantic image
generator. Our model can produce fully synthetic brain labels on-demand, with
or without pathology of interest, and then generate a corresponding MRI image
of an arbitrary guided style. Experiments show that brainSPADE synthetic data
can be used to train segmentation models with performance comparable to that of
models trained on real data.
- Abstract(参考訳): 優れた性能と汎用性を達成するために,医療画像分割モデルは,十分な可変性を持つサイズ可能なデータセットで訓練する必要がある。
倫理やガバナンスの制限、データラベル付けに伴うコストなどにより、科学的な開発は抑制され、限られたデータでトレーニングやテストが行われる。
データ拡張は、データ分布の変動を人工的に増加させ、モデルの一般化性を改善するためにしばしば用いられる。
最近の研究は、画像合成のための深い生成モデルを模索しており、そのようなアプローチは、汎用性とデータアクセスの問題に対処するために、効果的に無限量の可変データを生成することができる。
しかし、多くの提案されたソリューションは、生成されるものに対するユーザの制御を制限する。
本研究では,合成拡散型ラベル生成器と意味画像生成器を組み合わせたモデルであるbrainspadeを提案する。
本モデルでは, 興味の病理の有無に関わらず, オンデマンドで完全合成脳ラベルを作成し, 任意のガイド型MRI画像を生成する。
BrainSPADE合成データは、実際のデータでトレーニングされたモデルに匹敵するパフォーマンスでセグメンテーションモデルをトレーニングするために使用できる。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - A 3D generative model of pathological multi-modal MR images and
segmentations [3.4806591877889375]
脳MRIと関連セグメンテーションのための3次元生成モデルである脳SPADE3Dを提案する。
提案した共同画像分割生成モデルを用いて,高忠実度合成画像と関連するセグメンテーションを生成する。
データに予期せぬ病理が存在する場合、セグメント化モデルの性能に関する問題をモデルが緩和する方法を実証する。
論文 参考訳(メタデータ) (2023-11-08T09:36:37Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
生成モデルを使用して合成トレーニングデータを追加することで、データの不足に対処するための低コストな方法が提供される。
合成データと実データの両方によるトレーニングは、実データのみによるトレーニングよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-05T15:42:53Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Analyzing Effects of Fake Training Data on the Performance of Deep
Learning Systems [0.0]
ディープラーニングモデルは、クラス不均衡や分散シフトに対する堅牢性の欠如など、さまざまな問題に悩まされることが多い。
GAN(Generative Adversarial Networks)の出現により、高品質な合成データを生成することが可能になった。
本研究では, 各種合成データと原データとを混合した場合, アウト・オブ・ディストリビューションデータに対するモデルの堅牢性と, 予測の一般品質に影響を及ぼす影響を解析する。
論文 参考訳(メタデータ) (2023-03-02T13:53:22Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
R'enyiの差分プライバシーを用いた合成データ生成のための差分プライベートフレームワークを開発する。
提案手法は, 畳み込み自己エンコーダと畳み込み生成対向ネットワークを利用して, 生成した合成データの重要な特性をある程度保存する。
私たちのモデルは、同じプライバシー予算の下で既存の最新モデルを上回ることを実証します。
論文 参考訳(メタデータ) (2020-12-22T01:03:49Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。