論文の概要: A 3D generative model of pathological multi-modal MR images and
segmentations
- arxiv url: http://arxiv.org/abs/2311.04552v1
- Date: Wed, 8 Nov 2023 09:36:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 16:26:43.484215
- Title: A 3D generative model of pathological multi-modal MR images and
segmentations
- Title(参考訳): 病理学的多モードMR画像の3次元生成モデルとセグメンテーション
- Authors: Virginia Fernandez, Walter Hugo Lopez Pinaya, Pedro Borges, Mark S.
Graham, Tom Vercauteren, M. Jorge Cardoso
- Abstract要約: 脳MRIと関連セグメンテーションのための3次元生成モデルである脳SPADE3Dを提案する。
提案した共同画像分割生成モデルを用いて,高忠実度合成画像と関連するセグメンテーションを生成する。
データに予期せぬ病理が存在する場合、セグメント化モデルの性能に関する問題をモデルが緩和する方法を実証する。
- 参考スコア(独自算出の注目度): 3.4806591877889375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative modelling and synthetic data can be a surrogate for real medical
imaging datasets, whose scarcity and difficulty to share can be a nuisance when
delivering accurate deep learning models for healthcare applications. In recent
years, there has been an increased interest in using these models for data
augmentation and synthetic data sharing, using architectures such as generative
adversarial networks (GANs) or diffusion models (DMs). Nonetheless, the
application of synthetic data to tasks such as 3D magnetic resonance imaging
(MRI) segmentation remains limited due to the lack of labels associated with
the generated images. Moreover, many of the proposed generative MRI models lack
the ability to generate arbitrary modalities due to the absence of explicit
contrast conditioning. These limitations prevent the user from adjusting the
contrast and content of the images and obtaining more generalisable data for
training task-specific models. In this work, we propose brainSPADE3D, a 3D
generative model for brain MRI and associated segmentations, where the user can
condition on specific pathological phenotypes and contrasts. The proposed joint
imaging-segmentation generative model is shown to generate high-fidelity
synthetic images and associated segmentations, with the ability to combine
pathologies. We demonstrate how the model can alleviate issues with
segmentation model performance when unexpected pathologies are present in the
data.
- Abstract(参考訳): 生成的モデリングと合成データは、実際の医療画像データセットの代理であり、その不足と共有の困難さは、医療アプリケーションに対して正確なディープラーニングモデルを提供する際に迷惑となる可能性がある。
近年, GAN (Generative Adversarial Network) や拡散モデル (DM) などのアーキテクチャを用いて, データ拡張や合成データ共有にこれらのモデルを使用することへの関心が高まっている。
それでも、3次元磁気共鳴イメージング(MRI)セグメンテーションのようなタスクへの合成データの適用は、生成した画像に関連付けられたラベルの欠如により制限されている。
さらに, 提案する生成型mriモデルの多くは, 明示的なコントラストコンディショニングがないため, 任意のモダリティを生成できない。
これらの制限により、ユーザーは画像のコントラストやコンテントを調整でき、タスク固有のモデルを訓練するためのより汎用的なデータを得ることができる。
本研究では,脳MRIと関連セグメンテーションの3次元生成モデルである脳SPADE3Dを提案する。
提案するジョイントイメージング・セグメンテーション生成モデルにより,高忠実度合成画像と関連するセグメンテーションを生成し,病理を組み合わせることができることを示した。
データに予期せぬ病理が存在する場合、セグメント化モデルの性能の問題を軽減する方法を示す。
関連論文リスト
- 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
本稿では,ボリュームデータ生成の複雑さに対処するスライスに基づく遅延拡散アーキテクチャを提案する。
この手法は,医療用画像と関連するマスクの同時分布モデルを拡張し,データスカース体制下での同時生成を可能にする。
構造は, 大きさ, 形状, 相対位置などの腫瘍特性によって調節できるため, 腫瘍の多様性は様々である。
論文 参考訳(メタデータ) (2024-06-08T09:53:45Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
注意に基づく二重コントラスト生成モデルであるADC-cycleGANを提案する。
このモデルは、二重コントラスト損失項とCycleGAN損失を統合し、合成された画像がソース領域と区別可能であることを保証する。
実験により,提案したADCサイクルGANモデルが,他の最先端生成モデルに匹敵するサンプルを生成することが示された。
論文 参考訳(メタデータ) (2023-06-02T14:17:37Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
インペイントアルゴリズムは、入力画像の1つ以上の領域を変更することができるDL生成モデルのサブセットである。
これらのアルゴリズムの性能は、その限られた出力量のために、しばしば準最適である。
拡散確率モデル(DDPM)は、GANに匹敵する品質の結果を生成することができる、最近導入された生成ネットワークのファミリーである。
論文 参考訳(メタデータ) (2022-10-21T17:13:14Z) - Can segmentation models be trained with fully synthetically generated
data? [0.39577682622066246]
BrainSPADEは、合成拡散ベースのラベルジェネレータとセマンティックイメージジェネレータを組み合わせたモデルである。
本モデルでは, 興味の病理の有無に関わらず, オンデマンドで完全合成脳ラベルを作成でき, 任意のガイド型MRI画像を生成することができる。
brainSPADE合成データは、実際のデータでトレーニングされたモデルに匹敵するパフォーマンスでセグメンテーションモデルをトレーニングするために使用できる。
論文 参考訳(メタデータ) (2022-09-17T05:24:04Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。