Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation
- URL: http://arxiv.org/abs/2209.08355v5
- Date: Tue, 14 Nov 2023 02:43:04 GMT
- Title: Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation
- Authors: Minghui Zhang, Guang-Zhong Yang, Yun Gu
- Abstract summary: We propose a Differentiable Topology-Preserved Distance Transform (DTPDT) framework to improve the performance of airway segmentation.
A Topology-Preserved Surrogate (TPS) learning strategy is first proposed to balance the training progress within-class distribution.
A Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the predictionand ground-truth.
- Score: 34.22415353209505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detailed pulmonary airway segmentation is a clinically important task for
endobronchial intervention and treatment of peripheral located lung cancer
lesions. Convolutional Neural Networks (CNNs) are promising tools for medical
image analysis but have been performing poorly for cases when existing a
significant imbalanced feature distribution, which is true for the airway data
as the trachea and principal bronchi dominate most of the voxels whereas the
lobar bronchi and distal segmental bronchi occupy a small proportion. In this
paper, we propose a Differentiable Topology-Preserved Distance Transform
(DTPDT) framework to improve the performance of airway segmentation. A
Topology-Preserved Surrogate (TPS) learning strategy is first proposed to
balance the training progress within-class distribution. Furthermore, a
Convolutional Distance Transform (CDT) is designed to identify the breakage
phenomenon with superior sensitivity and minimize the variation of the distance
map between the predictionand ground-truth. The proposed method is validated
with the publically available reference airway segmentation datasets. The
detected rate of branch and length on public EXACT'09 and BAS datasets are
82.1%/79.6% and 96.5%/91.5% respectively, demonstrating the reliability and
efficiency of the method in terms of improving the topology completeness of the
segmentation performance while maintaining the overall topology accuracy.
Related papers
- Airway Labeling Meets Clinical Applications: Reflecting Topology Consistency and Outliers via Learnable Attentions [19.269806092729468]
airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy.
Previous methods are prone to generate inconsistent predictions.
This paper proposes a novel method that enhances topological consistency and improves the detection of abnormal airway branches.
arXiv Detail & Related papers (2024-10-31T12:04:30Z) - Shape-aware synthesis of pathological lung CT scans using CycleGAN for enhanced semi-supervised lung segmentation [0.0]
This paper emphasizes the use of CycleGAN for unpaired image-to-image translation.
It provides an augmentation method able to generate fake pathological images matching an existing ground truth.
Preliminary results from this research demonstrate significant qualitative and quantitative improvements.
arXiv Detail & Related papers (2024-05-14T12:45:49Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Adversarial Transformer for Repairing Human Airway Segmentation [7.176060570019899]
This paper presents a patch-scale adversarial-based refinement network that takes in preliminary segmentation along with original CT images and outputs a refined mask of the airway structure.
The results are quantitatively evaluated by seven metrics and achieved more than a 15% rise in detected length ratio and detected branch ratio.
arXiv Detail & Related papers (2022-10-21T15:20:08Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
We propose a region and structure prior embedded framework named BronchusNet to achieve accurate bronchial analysis.
For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples.
For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module.
arXiv Detail & Related papers (2022-05-14T02:32:33Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - LTSP: Long-Term Slice Propagation for Accurate Airway Segmentation [19.40457329997144]
Bronchoscopic intervention is a widely-used clinical technique for pulmonary diseases.
The airway map could be extracted from chest computed tomography (CT) scans automatically.
Due to the complex tree-like structure of the airway, preserving its topology completeness is a challenging task.
arXiv Detail & Related papers (2022-02-13T08:47:01Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.