Shape-aware synthesis of pathological lung CT scans using CycleGAN for enhanced semi-supervised lung segmentation
- URL: http://arxiv.org/abs/2405.08556v2
- Date: Tue, 9 Jul 2024 13:32:24 GMT
- Title: Shape-aware synthesis of pathological lung CT scans using CycleGAN for enhanced semi-supervised lung segmentation
- Authors: Rezkellah Noureddine Khiati, Pierre-Yves Brillet, Aurélien Justet, Radu Ispas, Catalin Fetita,
- Abstract summary: This paper emphasizes the use of CycleGAN for unpaired image-to-image translation.
It provides an augmentation method able to generate fake pathological images matching an existing ground truth.
Preliminary results from this research demonstrate significant qualitative and quantitative improvements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of pathological lung segmentation, a significant challenge in medical image analysis, particularly pronounced in cases of peripheral opacities (severe fibrosis and consolidation) because of the textural similarity between lung tissue and surrounding areas. To overcome these challenges, this paper emphasizes the use of CycleGAN for unpaired image-to-image translation, in order to provide an augmentation method able to generate fake pathological images matching an existing ground truth. Although previous studies have employed CycleGAN, they often neglect the challenge of shape deformation, which is crucial for accurate medical image segmentation. Our work introduces an innovative strategy that incorporates additional loss functions. Specifically, it proposes an L1 loss based on the lung surrounding which shape is constrained to remain unchanged at the transition from the healthy to pathological domains. The lung surrounding is derived based on ground truth lung masks available in the healthy domain. Furthermore, preprocessing steps, such as cropping based on ribs/vertebra locations, are applied to refine the input for the CycleGAN, ensuring that the network focus on the lung region. This is essential to avoid extraneous biases, such as the zoom effect bias, which can divert attention from the main task. The method is applied to enhance in semi-supervised manner the lung segmentation process by employing a U-Net model trained with on-the-fly data augmentation incorporating synthetic pathological tissues generated by the CycleGAN model. Preliminary results from this research demonstrate significant qualitative and quantitative improvements, setting a new benchmark in the field of pathological lung segmentation. Our code is available at https://github.com/noureddinekhiati/Semi-supervised-lung-segmentation
Related papers
- Automatic segmentation of lung findings in CT and application to Long
COVID [38.69538648742266]
S-MEDSeg is a deep learning based approach for accurate segmentation of lung lesions in chest CT images.
S-MEDSeg combines a pre-trained EfficientNet backbone, bidirectional feature pyramid network, and modern network advancements.
arXiv Detail & Related papers (2023-10-13T23:42:43Z) - Automatic lobe segmentation using attentive cross entropy and end-to-end
fissure generation [6.0255364788259165]
We propose a new automatic lung lobe segmentation framework, which pays attention to the area around the pulmonary fissure during the training process.
We also introduce an end-to-end pulmonary fissure generation method in the auxiliary pulmonary fissure segmentation task.
We achieve 97.83% and 94.75% dice scores on our private dataset STLB and public LUNA16 dataset respectively.
arXiv Detail & Related papers (2023-07-24T09:16:05Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation [34.22415353209505]
We propose a Differentiable Topology-Preserved Distance Transform (DTPDT) framework to improve the performance of airway segmentation.
A Topology-Preserved Surrogate (TPS) learning strategy is first proposed to balance the training progress within-class distribution.
A Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the predictionand ground-truth.
arXiv Detail & Related papers (2022-09-17T15:47:01Z) - Weakly Supervised Airway Orifice Segmentation in Video Bronchoscopy [0.0]
This paper addresses the automatic segmentation of bronchial orifices in bronchoscopy videos.
Deep learning-based approaches to this task are currently hampered due to the lack of readily-available ground truth segmentation data.
We present a data-driven pipeline consisting of a k-means followed by a compact marker-based watershed algorithm.
arXiv Detail & Related papers (2022-08-24T12:18:25Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer.
However, automatic reconstruction of pulmonary segments remains unexplored in the era of deep learning.
We propose ImPulSe, a deep implicit surface model designed for pulmonary segment reconstruction.
arXiv Detail & Related papers (2022-07-07T04:24:17Z) - Unsupervised COVID-19 Lesion Segmentation in CT Using Cycle Consistent
Generative Adversarial Network [9.845581652243583]
COVID-19 has become a global pandemic and is still posing a severe health risk to the public.
We proposed a novel unsupervised approach using cycle consistent generative adversarial network (cycle-GAN) which automates and accelerates the process of lesion delineation.
The proposed unsupervised segmentation method achieved high accuracy and efficiency in automatic COVID-19 lesion delineation.
arXiv Detail & Related papers (2021-11-23T01:47:34Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
We present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung.
Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation.
arXiv Detail & Related papers (2020-06-25T07:20:41Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.