Airway Labeling Meets Clinical Applications: Reflecting Topology Consistency and Outliers via Learnable Attentions
- URL: http://arxiv.org/abs/2410.23854v1
- Date: Thu, 31 Oct 2024 12:04:30 GMT
- Title: Airway Labeling Meets Clinical Applications: Reflecting Topology Consistency and Outliers via Learnable Attentions
- Authors: Chenyu Li, Minghui Zhang, Chuyan Zhang, Yun Gu,
- Abstract summary: airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy.
Previous methods are prone to generate inconsistent predictions.
This paper proposes a novel method that enhances topological consistency and improves the detection of abnormal airway branches.
- Score: 19.269806092729468
- License:
- Abstract: Accurate airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy. Automatic airway anatomical labeling is challenging due to significant individual variability and anatomical variations. Previous methods are prone to generate inconsistent predictions, which is harmful for preoperative planning and intraoperative navigation. This paper aims to address these challenges by proposing a novel method that enhances topological consistency and improves the detection of abnormal airway branches. We propose a novel approach incorporating two modules: the Soft Subtree Consistency (SSC) and the Abnormal Branch Saliency (ABS). The SSC module constructs a soft subtree to capture clinically relevant topological relationships, allowing for flexible feature aggregation within and across subtrees. The ABS module facilitates the interaction between node features and prototypes to distinguish abnormal branches, preventing the erroneous aggregation of features between normal and abnormal nodes. Evaluated on a challenging dataset characterized by severe airway distortion and atrophy, our method achieves superior performance compared to state-of-the-art approaches. Specifically, it attains a 91.4% accuracy at the segmental level and an 83.7% accuracy at the subsegmental level, representing a 1.4% increase in subsegmental accuracy and a 3.1% increase in topological consistency. Notably, the method demonstrates reliable performance in cases with disease-induced airway deformities, ensuring consistent and accurate labeling.
Related papers
- Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation [7.53596352508181]
This paper introduces a novel deep-learning method for the automatic detection and segmentation of lung nodules.
The method demonstrates superior performance in terms of sensitivity, Dice similarity coefficient, precision, and mean Intersection over Union (IoU)
The results indicate that this approach holds significant potential for improving computer-aided diagnosis systems.
arXiv Detail & Related papers (2024-09-20T19:47:07Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware
Multi-class Segmentation and Topology-guided Iterative Learning [15.492349389589121]
Intrathoracic airway segmentation in computed tomography (CT) is a prerequisite for various respiratory disease analyses.
Most of the existing airway datasets are incompletely labeled/annotated.
We propose a new anatomy-aware multi-class airway segmentation method enhanced by topology-guided iterative self-learning.
arXiv Detail & Related papers (2023-06-15T13:23:05Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Adversarial Transformer for Repairing Human Airway Segmentation [7.176060570019899]
This paper presents a patch-scale adversarial-based refinement network that takes in preliminary segmentation along with original CT images and outputs a refined mask of the airway structure.
The results are quantitatively evaluated by seven metrics and achieved more than a 15% rise in detected length ratio and detected branch ratio.
arXiv Detail & Related papers (2022-10-21T15:20:08Z) - Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation [34.22415353209505]
We propose a Differentiable Topology-Preserved Distance Transform (DTPDT) framework to improve the performance of airway segmentation.
A Topology-Preserved Surrogate (TPS) learning strategy is first proposed to balance the training progress within-class distribution.
A Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the predictionand ground-truth.
arXiv Detail & Related papers (2022-09-17T15:47:01Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.