論文の概要: Approximation results for Gradient Descent trained Shallow Neural
Networks in $1d$
- arxiv url: http://arxiv.org/abs/2209.08399v1
- Date: Sat, 17 Sep 2022 20:26:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 17:16:32.736794
- Title: Approximation results for Gradient Descent trained Shallow Neural
Networks in $1d$
- Title(参考訳): グラディエントDescent Training Shallow Neural Networksの1d$での近似結果
- Authors: R. Gentile, G. Welper
- Abstract要約: 広範に研究されているニューラルネットワークの2つの側面は、関数近似特性と勾配降下法によるトレーニングである。
現在の文献の大半では、これらの重量は完全にまたは部分的に手作りであるが、必ずしも実用的性能ではない。
本稿では、これらの2つの要求のバランスをとり、勾配降下による非重み付け最適化とともに、ニューラルネットワークの近似結果を1d$で提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two aspects of neural networks that have been extensively studied in the
recent literature are their function approximation properties and their
training by gradient descent methods. The approximation problem seeks accurate
approximations with a minimal number of weights. In most of the current
literature these weights are fully or partially hand-crafted, showing the
capabilities of neural networks but not necessarily their practical
performance. In contrast, optimization theory for neural networks heavily
relies on an abundance of weights in over-parametrized regimes.
This paper balances these two demands and provides an approximation result
for shallow networks in $1d$ with non-convex weight optimization by gradient
descent. We consider finite width networks and infinite sample limits, which is
the typical setup in approximation theory. Technically, this problem is not
over-parametrized, however, some form of redundancy reappears as a loss in
approximation rate compared to best possible rates.
- Abstract(参考訳): 最近の論文で広く研究されているニューラルネットワークの2つの側面は、関数近似特性と勾配降下法によるトレーニングである。
近似問題は、最小限の重みで正確な近似を求める。
現在の文献のほとんどでは、これらの重みは完全もしくは部分的に手作りであり、ニューラルネットワークの能力を示しているが、必ずしも実用的ではない。
対照的に、ニューラルネットワークの最適化理論は過度にパラメータ化された状態の重みに大きく依存している。
本稿では,これら2つの要求のバランスをとり,勾配降下による非凸重み最適化による1d$の浅層ネットワークに対する近似結果を提供する。
有限幅ネットワークと無限標本限界を考えるが、これは近似理論の典型的な構成である。
技術的には、この問題は過度にパラメータ化されていないが、ある種の冗長性は最良のレートと比較して近似率の損失として再現れる。
関連論文リスト
- Approximation and Gradient Descent Training with Neural Networks [0.0]
最近の研究は、ニューラル・タンジェント・カーネル(NTK)最適化の議論を過度にパラメータ化された状態に拡張している。
本稿では,勾配降下法により学習したネットワークの類似性を示す。
論文 参考訳(メタデータ) (2024-05-19T23:04:09Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
自己教師付き学習は、大規模なモデルを事前訓練する上で大きな進歩を遂げるが、小さなモデルでは苦労する。
追加の教師を必要とせず、訓練済みの小型モデルを得るための1段階のソリューションも導入する。
スリム化可能なネットワークは、完全なネットワークと、様々なネットワークを得るために一度にトレーニングできるいくつかの重み共有サブネットワークから構成される。
論文 参考訳(メタデータ) (2022-09-30T15:15:05Z) - Stability of Deep Neural Networks via discrete rough paths [0.0]
入力データとトレーニングされたネットワーク重みの両面から,Deep Residual Neural Networksの出力の事前推定を行う。
我々は、残差ニューラルネットワークを(粗)差分方程式の解として解釈し、離散時間シグネチャと粗経路理論の最近の結果に基づいてそれらを解析する。
論文 参考訳(メタデータ) (2022-01-19T12:40:28Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Gradient-trained Weights in Wide Neural Networks Align Layerwise to
Error-scaled Input Correlations [11.176824373696324]
我々は、勾配降下によって訓練された非線形活性化を伴う無限幅ニューラルネットワークの層方向の重みダイナミクスを導出する。
我々は、バックプロパゲーションと同じアライメントを理論的に達成するバックプロパゲーションフリー学習ルール、Align-zeroとAlign-adaを定式化した。
論文 参考訳(メタデータ) (2021-06-15T21:56:38Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Training highly effective connectivities within neural networks with
randomly initialized, fixed weights [4.56877715768796]
重みの符号を反転させてネットワークを訓練する新しい方法を提案する。
重みが一定等級であっても、高非対称分布から重みが引き出される場合でも良い結果が得られる。
論文 参考訳(メタデータ) (2020-06-30T09:41:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。