論文の概要: Spatial-Temporal Deep Embedding for Vehicle Trajectory Reconstruction
from High-Angle Video
- arxiv url: http://arxiv.org/abs/2209.08417v1
- Date: Sat, 17 Sep 2022 22:32:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 16:15:51.329071
- Title: Spatial-Temporal Deep Embedding for Vehicle Trajectory Reconstruction
from High-Angle Video
- Title(参考訳): 高角映像からの車両軌道再構成のための空間時間深層埋め込み
- Authors: Tianya T. Zhang Ph.D., Peter J. Jin Ph.D., Han Zhou, Benedetto
Piccoli, Ph.D
- Abstract要約: 車両セグメンテーションのためのインスタンス認識埋め込みをSTMap上に生成するために,画素レベルとインスタンスレベルの両方でパリティ制約を課すモデルを開発した。
デザインされたモデルは、すべてのNGSIM US-101ビデオを処理して完全な車両軌道を生成するために適用される。
- 参考スコア(独自算出の注目度): 1.8520147498637294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial-temporal Map (STMap)-based methods have shown great potential to
process high-angle videos for vehicle trajectory reconstruction, which can meet
the needs of various data-driven modeling and imitation learning applications.
In this paper, we developed Spatial-Temporal Deep Embedding (STDE) model that
imposes parity constraints at both pixel and instance levels to generate
instance-aware embeddings for vehicle stripe segmentation on STMap. At pixel
level, each pixel was encoded with its 8-neighbor pixels at different ranges,
and this encoding is subsequently used to guide a neural network to learn the
embedding mechanism. At the instance level, a discriminative loss function is
designed to pull pixels belonging to the same instance closer and separate the
mean value of different instances far apart in the embedding space. The output
of the spatial-temporal affinity is then optimized by the mutex-watershed
algorithm to obtain final clustering results. Based on segmentation metrics,
our model outperformed five other baselines that have been used for STMap
processing and shows robustness under the influence of shadows, static noises,
and overlapping. The designed model is applied to process all public NGSIM
US-101 videos to generate complete vehicle trajectories, indicating a good
scalability and adaptability. Last but not least, the strengths of the scanline
method with STDE and future directions were discussed. Code, STMap dataset and
video trajectory are made publicly available in the online repository. GitHub
Link: shorturl.at/jklT0.
- Abstract(参考訳): 空間-時間マップ(stmap)ベースの手法は、様々なデータ駆動モデリングや模倣学習アプリケーションのニーズを満たすことができる車両軌道再構成のための高角ビデオを処理する大きな可能性を示している。
本稿では,STMap上の車両ストリップ分割のためのインスタンス認識埋め込みを生成するために,画素レベルとインスタンスレベルのパリティ制約を課す空間時間深層埋め込み(STDE)モデルを開発した。
ピクセルレベルでは、各ピクセルは異なる範囲の8-neighborピクセルでエンコードされ、このエンコーディングはニューラルネットワークを誘導して埋め込みメカニズムを学ぶために使用される。
インスタンスレベルでは、識別損失関数は、同じインスタンスに属するピクセルをより近づけて、埋め込み空間内の異なるインスタンスの平均値を分離するように設計されている。
空間-時間親和性の出力はmutex-watershedアルゴリズムによって最適化され、最終的なクラスタリング結果が得られる。
セグメンテーションの指標に基づいて,STMap処理に使用されている5つのベースラインを性能評価し,シャドウ,静的ノイズ,重なり合いの影響下で頑健さを示した。
設計されたモデルは、すべての公開NGSIM US-101ビデオを処理して完全な車両軌道を生成し、優れたスケーラビリティと適応性を示す。
最後に,STDEを用いた走査線法と今後の方向性について考察した。
コード、STMapデータセット、ビデオトラジェクトリは、オンラインリポジトリで公開されている。
github リンク: shorturl.at/jklt0。
関連論文リスト
- LMT-Net: Lane Model Transformer Network for Automated HD Mapping from Sparse Vehicle Observations [11.395749549636868]
Lane Model Transformer Network (LMT-Net) は、エンコーダとデコーダのニューラルネットワークアーキテクチャであり、ポリリン符号化を実行し、レーンペアとその接続性を予測する。
我々は、複数の車両観測と、地上真実(GT)としての人間のアノテーションからなる内部データセット上でのLMT-Netの性能を評価する。
論文 参考訳(メタデータ) (2024-09-19T02:14:35Z) - SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
SIGMA (Sinkhorn-guided Masked Video Modelling) は、新しいビデオ事前学習法である。
時空管の特徴を,限られた数の学習可能なクラスタに均等に分散する。
10個のデータセットによる実験結果から,より高性能で時間的,堅牢な映像表現を学習する上で,SIGMAの有効性が検証された。
論文 参考訳(メタデータ) (2024-07-22T08:04:09Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
本稿では,ビデオシーケンスを通して任意の物理面上の問合せ点を効果的に追跡する,TAP(Tracking Any Point)の新しいモデルを提案する。
提案手法では,(1)他のフレームの問合せ点に対する適切な候補点マッチングを独立に特定するマッチング段階と,(2)局所的相関に基づいてトラジェクトリと問合せの両方を更新する改良段階の2段階を用いる。
結果として得られたモデルは、DAVISにおける平均約20%の絶対平均ジャカード(AJ)改善によって示されるように、TAP-Vidベンチマークにおける大きなマージンで、すべてのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2023-06-14T17:07:51Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - Large-Scale 3D Semantic Reconstruction for Automated Driving Vehicles
with Adaptive Truncated Signed Distance Function [9.414880946870916]
本稿では,LiDARとカメラセンサを用いた新しい3次元再構成と意味マッピングシステムを提案する。
Adaptive Truncated Functionは表面を暗黙的に記述するために導入され、異なるLiDAR点間隔を扱うことができる。
各三角形メッシュに対して最適なセマンティッククラスを推定するために,最適な画像パッチ選択戦略を提案する。
論文 参考訳(メタデータ) (2022-02-28T15:11:25Z) - Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode
Decomposition and Res-UNet+ Neural Networks [0.0]
本稿では,高角交通カメラから車両軌跡を抽出する,機械学習による縦走査法を提案する。
空間時間マップ(STMap)をスパースフォアグラウンドおよびローランク背景に分解することにより,車両ストランドの抽出に動的モード分解(DMD)法を適用した。
Res-UNet+という名前のディープニューラルネットワークは、2つの一般的なディープラーニングアーキテクチャを適用することでセマンティックセグメンテーションタスクのために設計された。
論文 参考訳(メタデータ) (2022-01-13T00:49:24Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - Learning Spatio-Appearance Memory Network for High-Performance Visual
Tracking [79.80401607146987]
既存のオブジェクトトラッキングは通常、フレーム間の視覚的ターゲットにマッチするバウンディングボックスベースのテンプレートを学習する。
本稿では,局所時間メモリネットワークを備え,正確な時空間対応を学習するセグメンテーションに基づくトラッキングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-09-21T08:12:02Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。