論文の概要: Computed Decision Weights and a New Learning Algorithm for Neural
Classifiers
- arxiv url: http://arxiv.org/abs/2209.08422v1
- Date: Sat, 17 Sep 2022 22:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 18:54:46.880788
- Title: Computed Decision Weights and a New Learning Algorithm for Neural
Classifiers
- Title(参考訳): 計算決定重みとニューラル分類器の新しい学習アルゴリズム
- Authors: Eugene Wong
- Abstract要約: ニューラル分類器の決定層重みをトレーニングするよりも、計算の可能性を考える。
後者の定式化は、単純さと有効性の両方で、事前決定の重み付けのための有望な新しい学習プロセスをもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we consider the possibility of computing rather than training
the decision layer weights of a neural classifier. Such a possibility arises in
two way, from making an appropriate choice of loss function and by solving a
problem of constrained optimization. The latter formulation leads to a
promising new learning process for pre-decision weights with both simplicity
and efficacy.
- Abstract(参考訳): 本稿では,ニューラル分類器の決定層重みをトレーニングするよりも,計算の可能性を検討する。
そのような可能性は、損失関数を適切に選択することと、制約付き最適化の問題を解くことによって生じる。
後者の定式化は、単純さと有効性の両方を備えた事前決定重み付けのための有望な新しい学習プロセスをもたらす。
関連論文リスト
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut [1.4624458429745086]
本研究は,最適な性能を持つ1つのアルゴリズムを選択するのではなく,インスタンスに基づいてアルゴリズムを選択することが可能となるような設定を考慮し,最近の研究を基礎にしている。
特に、代表的なインスタンスのサンプルが与えられた場合、問題のインスタンスをそのインスタンスの最も適切なアルゴリズムにマッピングするニューラルネットワークを学習する。
言い換えれば、ニューラルネットワークは混合整数最適化インスタンスを入力として取り、そのインスタンスの小さな分岐とカットツリーをもたらす決定を出力する。
論文 参考訳(メタデータ) (2024-02-04T03:03:27Z) - End-to-End Learning for Stochastic Optimization: A Bayesian Perspective [9.356870107137093]
最適化におけるエンド・ツー・エンド・ラーニングの原則的アプローチを開発する。
本稿では,標準エンドツーエンド学習アルゴリズムがベイズ解釈を認め,ベイズ後の行動地図を訓練することを示す。
次に、意思決定マップの学習のための新しいエンドツーエンド学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-07T05:55:45Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - DPDR: A novel machine learning method for the Decision Process for
Dimensionality Reduction [1.827510863075184]
教師付き学習コンテキストにおいて、次元性を減らすための適切な方法を見つけることは、しばしば紛らわしい。
本稿では,教師付き学習文脈における最適次元削減法を選択するための新しい手法を提案する。
主なアルゴリズムはランダムフォレストアルゴリズム(RF)、主成分分析アルゴリズム(PCA)、多層パーセプトロン(MLP)ニューラルネットワークアルゴリズムである。
論文 参考訳(メタデータ) (2022-06-17T19:14:39Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Training Binary Neural Networks using the Bayesian Learning Rule [19.01146578435531]
二分重のニューラルネットワークは計算効率が良く、ハードウェアに優しいが、そのトレーニングには離散的な最適化の問題が伴うため、難しい。
本稿では、既存のアプローチを正当化し、拡張するバイナリニューラルネットワークをトレーニングするための原則的アプローチを提案する。
私たちの研究は、既存のアプローチを正当化し拡張するバイナリニューラルネットワークをトレーニングするための原則化されたアプローチを提供します。
論文 参考訳(メタデータ) (2020-02-25T10:20:10Z) - An improved online learning algorithm for general fuzzy min-max neural
network [11.631815277762257]
本稿では,一般ファジィmin-maxニューラルネット(GFMM)のための現在のオンライン学習アルゴリズムの改良版を提案する。
提案手法では、重なり合うハイパーボックスの収縮過程は使用せず、エラー率を増大させる可能性が高い。
オンライン学習アルゴリズムでは,トレーニングサンプルの提示順序に対する感度を低減するために,簡単なアンサンブル法を提案する。
論文 参考訳(メタデータ) (2020-01-08T06:24:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。