Rethinking Personalized Ranking at Pinterest: An End-to-End Approach
- URL: http://arxiv.org/abs/2209.08435v1
- Date: Sun, 18 Sep 2022 01:06:00 GMT
- Title: Rethinking Personalized Ranking at Pinterest: An End-to-End Approach
- Authors: Jiajing Xu, Andrew Zhai, Charles Rosenberg
- Abstract summary: We present our journey to revolutionize the personalized recommendation engine through end-to-end learning from raw user actions.
The proposed system has been deployed in production at Pinterest and has delivered significant online gains across organic and Ads applications.
- Score: 7.295811134874487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present our journey to revolutionize the personalized
recommendation engine through end-to-end learning from raw user actions. We
encode user's long-term interest in Pinner- Former, a user embedding optimized
for long-term future actions via a new dense all-action loss, and capture
user's short-term intention by directly learning from the real-time action
sequences. We conducted both offline and online experiments to validate the
performance of the new model architecture, and also address the challenge of
serving such a complex model using mixed CPU/GPU setup in production. The
proposed system has been deployed in production at Pinterest and has delivered
significant online gains across organic and Ads applications.
Related papers
- TransAct: Transformer-based Realtime User Action Model for
Recommendation at Pinterest [17.247452803197362]
This paper presents Pinterest's ranking architecture for Homefeed.
We propose TransAct, a sequential model that extracts users' short-term preferences from their realtime activities.
We describe the results of ablation studies, the challenges we faced during productionization, and the outcome of an online A/B experiment.
arXiv Detail & Related papers (2023-05-31T23:45:29Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - PinnerFormer: Sequence Modeling for User Representation at Pinterest [60.335384724891746]
We introduce PinnerFormer, a user representation trained to predict a user's future long-term engagement.
Unlike prior approaches, we adapt our modeling to a batch infrastructure via our new dense all-action loss.
We show that by doing so, we significantly close the gap between batch user embeddings that are generated once a day and realtime user embeddings generated whenever a user takes an action.
arXiv Detail & Related papers (2022-05-09T18:26:51Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - Denoising User-aware Memory Network for Recommendation [11.145186013006375]
We propose a novel CTR model named denoising user-aware memory network (DUMN)
DUMN uses the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback.
Experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T14:39:36Z) - Context-aware short-term interest first model for session-based
recommendation [0.0]
We propose a context-aware short-term interest first model (CASIF)
The aim of this paper is improve the accuracy of recommendations by combining context and short-term interest.
In the end, the short-term and long-term interest are combined as the final interest and multiplied by the candidate vector to obtain the recommendation probability.
arXiv Detail & Related papers (2021-03-29T11:36:00Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
We propose a novel long sequential recommendation model called Dynamic Memory-based Attention Network (DMAN)
It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users.
Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation.
arXiv Detail & Related papers (2021-02-18T11:08:54Z) - Dynamic Embeddings for Interaction Prediction [2.5758502140236024]
In recommender systems (RSs), predicting the next item that a user interacts with is critical for user retention.
Recent studies have shown the effectiveness of modeling the mutual interactions between users and items using separate user and item embeddings.
We propose a novel method called DeePRed that addresses some of their limitations.
arXiv Detail & Related papers (2020-11-10T16:04:46Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.