Evaluating the Paperclip Maximizer: Are RL-Based Language Models More Likely to Pursue Instrumental Goals?
- URL: http://arxiv.org/abs/2502.12206v1
- Date: Sun, 16 Feb 2025 16:29:20 GMT
- Title: Evaluating the Paperclip Maximizer: Are RL-Based Language Models More Likely to Pursue Instrumental Goals?
- Authors: Yufei He, Yuexin Li, Jiaying Wu, Yuan Sui, Yulin Chen, Bryan Hooi,
- Abstract summary: Key concern is textitinstrumental convergence, where an AI system develops unintended intermediate goals that override the ultimate objective and deviate from human-intended goals.
This issue is particularly relevant in reinforcement learning (RL)-trained models, which can generate creative but unintended strategies to maximize rewards.
We show that RL-driven models exhibit a stronger tendency for instrumental convergence due to their optimization of goal-directed behavior in ways that may misalign with human intentions.
- Score: 33.11148546999906
- License:
- Abstract: As large language models (LLMs) continue to evolve, ensuring their alignment with human goals and values remains a pressing challenge. A key concern is \textit{instrumental convergence}, where an AI system, in optimizing for a given objective, develops unintended intermediate goals that override the ultimate objective and deviate from human-intended goals. This issue is particularly relevant in reinforcement learning (RL)-trained models, which can generate creative but unintended strategies to maximize rewards. In this paper, we explore instrumental convergence in LLMs by comparing models trained with direct RL optimization (e.g., the o1 model) to those trained with reinforcement learning from human feedback (RLHF). We hypothesize that RL-driven models exhibit a stronger tendency for instrumental convergence due to their optimization of goal-directed behavior in ways that may misalign with human intentions. To assess this, we introduce InstrumentalEval, a benchmark for evaluating instrumental convergence in RL-trained LLMs. Initial experiments reveal cases where a model tasked with making money unexpectedly pursues instrumental objectives, such as self-replication, implying signs of instrumental convergence. Our findings contribute to a deeper understanding of alignment challenges in AI systems and the risks posed by unintended model behaviors.
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
Training large language models (LLMs) to serve as effective assistants for humans requires careful consideration.
A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences.
In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals.
arXiv Detail & Related papers (2024-04-12T15:54:15Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments.
We apply CogBench to 35 large language models (LLMs) and analyze this data using statistical multilevel modeling techniques.
We find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs' behavior.
arXiv Detail & Related papers (2024-02-28T10:43:54Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - From Instructions to Intrinsic Human Values -- A Survey of Alignment
Goals for Big Models [48.326660953180145]
We conduct a survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal.
Our analysis reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs.
arXiv Detail & Related papers (2023-08-23T09:11:13Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.