Dynamic Global Memory for Document-level Argument Extraction
- URL: http://arxiv.org/abs/2209.08679v1
- Date: Sun, 18 Sep 2022 23:45:25 GMT
- Title: Dynamic Global Memory for Document-level Argument Extraction
- Authors: Xinya Du, Sha Li, Heng Ji
- Abstract summary: We introduce a new global neural generation-based framework for document-level event argument extraction.
We use a document memory store to record the contextual event information and leverage it to implicitly and explicitly help with decoding of arguments for later events.
Empirical results show that our framework outperforms prior methods substantially.
- Score: 63.314514124716936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting informative arguments of events from news articles is a
challenging problem in information extraction, which requires a global
contextual understanding of each document. While recent work on document-level
extraction has gone beyond single-sentence and increased the cross-sentence
inference capability of end-to-end models, they are still restricted by certain
input sequence length constraints and usually ignore the global context between
events. To tackle this issue, we introduce a new global neural generation-based
framework for document-level event argument extraction by constructing a
document memory store to record the contextual event information and leveraging
it to implicitly and explicitly help with decoding of arguments for later
events. Empirical results show that our framework outperforms prior methods
substantially and it is more robust to adversarially annotated examples with
our constrained decoding design. (Our code and resources are available at
https://github.com/xinyadu/memory_docie for research purpose.)
Related papers
- MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation [104.6065882758648]
MAVEN-Arg is the first all-in-one dataset supporting event detection, event argument extraction, and event relation extraction.
As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; and (3) the exhaustive annotation supporting all task variants of EAE.
arXiv Detail & Related papers (2023-11-15T16:52:14Z) - FAMuS: Frames Across Multiple Sources [74.03795560933612]
FAMuS is a new corpus of Wikipedia passages that emphreport on some event, paired with underlying, genre-diverse (non-Wikipedia) emphsource articles for the same event.
We present results on two key event understanding tasks enabled by FAMuS.
arXiv Detail & Related papers (2023-11-09T18:57:39Z) - From Simple to Complex: A Progressive Framework for Document-level
Informative Argument Extraction [34.37013964529546]
Event Argument Extraction (EAE) requires the model to extract arguments of multiple events from a single document.
We propose a simple-to-complex progressive framework for document-level EAE.
Our model outperforms SOTA by 1.4% in F1, indicating the proposed simple-to-complex framework is useful in the EAE task.
arXiv Detail & Related papers (2023-10-25T04:38:02Z) - AWESOME: GPU Memory-constrained Long Document Summarization using Memory
Mechanism and Global Salient Content [16.458279293804285]
Long document summarization systems are critical for domains with lengthy and jargonladen text.
AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents.
arXiv Detail & Related papers (2023-05-24T07:00:00Z) - Global Constraints with Prompting for Zero-Shot Event Argument
Classification [49.84347224233628]
We propose to use global constraints with prompting to tackle event argument classification without any annotation and task-specific training.
A pre-trained language model scores the new passages, making the initial prediction.
Our novel prompt templates can easily adapt to all events and argument types without manual effort.
arXiv Detail & Related papers (2023-02-09T06:39:29Z) - Retrieval-Augmented Generative Question Answering for Event Argument
Extraction [66.24622127143044]
We propose a retrieval-augmented generative QA model (R-GQA) for event argument extraction.
It retrieves the most similar QA pair and augments it as prompt to the current example's context, then decodes the arguments as answers.
Our approach outperforms substantially prior methods across various settings.
arXiv Detail & Related papers (2022-11-14T02:00:32Z) - Zero-Shot On-the-Fly Event Schema Induction [61.91468909200566]
We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them.
Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner.
arXiv Detail & Related papers (2022-10-12T14:37:00Z) - Few-Shot Document-Level Event Argument Extraction [2.680014762694412]
Event argument extraction (EAE) has been well studied at the sentence level but under-explored at the document level.
We present FewDocAE, a Few-Shot Document-Level Event Argument Extraction benchmark.
arXiv Detail & Related papers (2022-09-06T03:57:23Z) - Event Argument Extraction using Causal Knowledge Structures [9.56216681584111]
Event Argument extraction refers to the task of extracting structured information from unstructured text for a particular event of interest.
Most of the existing works model this task at a sentence level, restricting the context to a local scope.
We propose an external knowledge aided approach to infuse document-level event information to aid the extraction of complex event arguments.
arXiv Detail & Related papers (2021-05-02T13:59:07Z) - Event Coreference Resolution via a Multi-loss Neural Network without
Using Argument Information [23.533310981207446]
Event coreference resolution(ECR) is an important task in Natural Language Processing (NLP)
We propose a multi-loss neural network model that does not need any argument information to do the within-document event coreference resolution task.
arXiv Detail & Related papers (2020-09-22T02:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.