From Simple to Complex: A Progressive Framework for Document-level
Informative Argument Extraction
- URL: http://arxiv.org/abs/2310.16358v1
- Date: Wed, 25 Oct 2023 04:38:02 GMT
- Title: From Simple to Complex: A Progressive Framework for Document-level
Informative Argument Extraction
- Authors: Quzhe Huang, Yanxi Zhang, Dongyan Zhao
- Abstract summary: Event Argument Extraction (EAE) requires the model to extract arguments of multiple events from a single document.
We propose a simple-to-complex progressive framework for document-level EAE.
Our model outperforms SOTA by 1.4% in F1, indicating the proposed simple-to-complex framework is useful in the EAE task.
- Score: 34.37013964529546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level Event Argument Extraction (EAE) requires the model to extract
arguments of multiple events from a single document. Considering the underlying
dependencies between these events, recent efforts leverage the idea of
"memory", where the results of already predicted events are cached and can be
retrieved to help the prediction of upcoming events. These methods extract
events according to their appearance order in the document, however, the event
that appears in the first sentence does not mean that it is the easiest to
extract. Existing methods might introduce noise to the extraction of upcoming
events if they rely on an incorrect prediction of previous events. In order to
provide more reliable memory, we propose a simple-to-complex progressive
framework for document-level EAE. Specifically, we first calculate the
difficulty of each event and then, we conduct the extraction following a
simple-to-complex order. In this way, the memory will store the most certain
results, and the model could use these reliable sources to help the prediction
of more difficult events. Experiments on WikiEvents show that our model
outperforms SOTA by 1.4% in F1, indicating the proposed simple-to-complex
framework is useful in the EAE task.
Related papers
- Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument Extraction [19.51890490853855]
We propose a multiple-event argument extraction model DEEIA.
It is capable of extracting arguments from all events within a document simultaneously.
Our method achieves new state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2024-05-03T07:04:35Z) - Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types.
We aim to improve zero-shot event detection by training models to better follow event definitions.
arXiv Detail & Related papers (2024-03-05T01:46:50Z) - MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation [104.6065882758648]
MAVEN-Arg is the first all-in-one dataset supporting event detection, event argument extraction, and event relation extraction.
As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; and (3) the exhaustive annotation supporting all task variants of EAE.
arXiv Detail & Related papers (2023-11-15T16:52:14Z) - Token-Event-Role Structure-based Multi-Channel Document-Level Event
Extraction [15.02043375212839]
This paper introduces a novel framework for document-level event extraction, incorporating a new data structure called token-event-role.
The proposed data structure enables our model to uncover the primary role of tokens in multiple events, facilitating a more comprehensive understanding of event relationships.
The results demonstrate that our approach outperforms the state-of-the-art method by 9.5 percentage points in terms of the F1 score.
arXiv Detail & Related papers (2023-06-30T15:22:57Z) - Zero-Shot On-the-Fly Event Schema Induction [61.91468909200566]
We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them.
Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner.
arXiv Detail & Related papers (2022-10-12T14:37:00Z) - Dynamic Global Memory for Document-level Argument Extraction [63.314514124716936]
We introduce a new global neural generation-based framework for document-level event argument extraction.
We use a document memory store to record the contextual event information and leverage it to implicitly and explicitly help with decoding of arguments for later events.
Empirical results show that our framework outperforms prior methods substantially.
arXiv Detail & Related papers (2022-09-18T23:45:25Z) - EA$^2$E: Improving Consistency with Event Awareness for Document-Level
Argument Extraction [52.43978926985928]
We introduce the Event-Aware Argument Extraction (EA$2$E) model with augmented context for training and inference.
Experiment results on WIKIEVENTS and ACE2005 datasets demonstrate the effectiveness of EA$2$E.
arXiv Detail & Related papers (2022-05-30T04:33:51Z) - CasEE: A Joint Learning Framework with Cascade Decoding for Overlapping
Event Extraction [9.300138832652658]
Event extraction (EE) is a crucial information extraction task that aims to extract event information in texts.
This work systematically studies the realistic event overlapping problem, where a word may serve as triggers with several types or arguments with different roles.
We propose a novel joint learning framework with cascade decoding for overlapping event extraction, termed as CasEE.
arXiv Detail & Related papers (2021-07-04T10:01:55Z) - Document-Level Event Argument Extraction by Conditional Generation [75.73327502536938]
Event extraction has long been treated as a sentence-level task in the IE community.
We propose a document-level neural event argument extraction model by formulating the task as conditional generation following event templates.
We also compile a new document-level event extraction benchmark dataset WikiEvents.
arXiv Detail & Related papers (2021-04-13T03:36:38Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
We propose an end-to-end model leveraging Deep Value Networks (DVN), a structured prediction algorithm, to efficiently capture cross-event dependencies for document-level event extraction.
Our approach achieves comparable performance to CRF-based models on ACE05, while enjoys significantly higher computational efficiency.
arXiv Detail & Related papers (2020-10-24T05:28:16Z) - Probing and Fine-tuning Reading Comprehension Models for Few-shot Event
Extraction [17.548548562222766]
We propose a reading comprehension framework for event extraction.
By constructing proper query templates, our approach can effectively distill rich knowledge about tasks and label semantics.
Our method achieves state-of-the-art performance on the ACE 2005 benchmark when trained with full supervision.
arXiv Detail & Related papers (2020-10-21T21:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.