論文の概要: Uncertainty Aware Multitask Pyramid Vision Transformer For UAV-Based
Object Re-Identification
- arxiv url: http://arxiv.org/abs/2209.08686v1
- Date: Mon, 19 Sep 2022 00:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 18:21:01.298026
- Title: Uncertainty Aware Multitask Pyramid Vision Transformer For UAV-Based
Object Re-Identification
- Title(参考訳): uavベースオブジェクト再同定のための不確実性を考慮したマルチタスクピラミッドビジョントランスフォーマ
- Authors: Syeda Nyma Ferdous, Xin Li, Siwei Lyu
- Abstract要約: UAVベースのオブジェクトReIDのバックボーンとして、畳み込みのない新しいマルチスケールアーキテクチャであるPraamid Vision Transformer(PVT)を用いるマルチタスク学習手法を提案する。
クラス内変動の不確実性モデリングにより、不確実性認識オブジェクトIDとカメラID情報の両方を用いて、提案手法を協調的に最適化することができる。
- 参考スコア(独自算出の注目度): 38.19907319079833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object Re-IDentification (ReID), one of the most significant problems in
biometrics and surveillance systems, has been extensively studied by image
processing and computer vision communities in the past decades. Learning a
robust and discriminative feature representation is a crucial challenge for
object ReID. The problem is even more challenging in ReID based on Unmanned
Aerial Vehicle (UAV) as the images are characterized by continuously varying
camera parameters (e.g., view angle, altitude, etc.) of a flying drone. To
address this challenge, multiscale feature representation has been considered
to characterize images captured from UAV flying at different altitudes. In this
work, we propose a multitask learning approach, which employs a new multiscale
architecture without convolution, Pyramid Vision Transformer (PVT), as the
backbone for UAV-based object ReID. By uncertainty modeling of intraclass
variations, our proposed model can be jointly optimized using both
uncertainty-aware object ID and camera ID information. Experimental results are
reported on PRAI and VRAI, two ReID data sets from aerial surveillance, to
verify the effectiveness of our proposed approach
- Abstract(参考訳): バイオメトリックスと監視システムにおいて最も重要な問題の一つであるオブジェクト再識別(ReID)は、過去数十年間、画像処理とコンピュータビジョンのコミュニティによって広く研究されてきた。
堅牢で差別的な特徴表現を学ぶことは、オブジェクトReIDにとって重要な課題である。
無人航空機(UAV)をベースとしたReIDでは、画像が連続的に変化するカメラパラメータ(視角、高度など)によって特徴付けられるため、この問題はさらに困難である。
この課題に対処するため、様々な高度でUAVから撮影した画像を特徴付けるために、マルチスケールの特徴表現が検討されている。
本研究では,UAVベースのオブジェクトReIDのバックボーンとして,畳み込みのない新しいマルチスケールアーキテクチャであるPraamid Vision Transformer(PVT)を用いるマルチタスク学習手法を提案する。
クラス内変異の不確実性モデリングにより,不確実性を認識するオブジェクトidとカメラid情報の両方を用いて,提案モデルを協調的に最適化することができる。
提案手法の有効性を検証するため,航空監視用reidデータセットpraiとvraiを用いて実験結果が報告された。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - UAV (Unmanned Aerial Vehicles): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking [0.0]
無人航空機(UAV)は、さまざまな研究領域におけるデータの収集と分析のプロセスに革命をもたらした。
UAVデータセットは、衛星画像、ドローンが撮影した画像、ビデオなど、さまざまな種類のデータで構成されている。
これらのデータセットは、災害被害評価、航空監視、物体認識、追跡において重要な役割を果たす。
論文 参考訳(メタデータ) (2024-09-05T04:47:36Z) - View-decoupled Transformer for Person Re-identification under Aerial-ground Camera Network [87.36616083812058]
地上人物再識別のための簡易かつ効果的なフレームワークとして,ビューデカップリングトランス (VDT) が提案されている。
2つの主要なコンポーネントは、ビュー関連とビュー非関連の機能を切り離すためにVDTで設計されている。
さらに,5/8の空中/地上カメラ,5,000のアイデンティティ,108,563のイメージからなる大規模AGPReIDデータセットCARGOをコントリビュートした。
論文 参考訳(メタデータ) (2024-03-21T16:08:21Z) - AG-ReID.v2: Bridging Aerial and Ground Views for Person Re-identification [39.58286453178339]
空中人物再識別(Re-ID)は、コンピュータビジョンにおいて固有の課題を提示する。
AG-ReID.v2は、空中および地上の混合シナリオにおいて、人物Re-ID用に特別に設計されたデータセットである。
このデータセットは、1,615人のユニークな個人の100,502枚の画像で構成され、それぞれに一致するIDと15のソフト属性ラベルが付加されている。
論文 参考訳(メタデータ) (2024-01-05T04:53:33Z) - Rotation Invariant Transformer for Recognizing Object in UAVs [66.1564328237299]
本稿では,UAVから興味の対象を認識するための回転不変視変換器(RotTrans)を提案する。
RotTrans は最先端の mAP と Rank1 よりも5.9%、かつ 4.8% 高い最先端の 最先端の 最先端の 最先端の 技術 をはるかに上回っている。
我々のソリューションは、マルチモーダルビデオ推論・アナライジングコンペティションにおいて、UAVベースの人物認識トラックで第一位を獲得しました。
論文 参考訳(メタデータ) (2023-11-05T03:55:08Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA)は、全方位画像(ODI)の人間の知覚品質を客観的に評価することを目的としている。
ODIの品質評価は、既存のBOIQAパイプラインがオブザーバのブラウジングプロセスのモデリングを欠いているという事実によって著しく妨げられている。
Assessor360と呼ばれるBOIQAのための新しいマルチシーケンスネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-18T13:55:28Z) - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification [21.48667873335246]
近年のディープラーニング開発により、視覚ベースの対UAVシステムは単一のカメラでUAVを検出し、追跡することができる。
単一のカメラのカバー範囲は限られており、カメラ間のUAVにマッチするマルチカメラ構成が必要である。
我々は,この新興地域での機械学習ソリューションの開発を容易にする,UAV-reIDという新しいUAV再識別データセットを提案する。
論文 参考訳(メタデータ) (2021-04-13T14:13:09Z) - SyNet: An Ensemble Network for Object Detection in UAV Images [13.198689566654107]
本稿では,マルチステージ方式とシングルステージ方式を組み合わせたアンサンブルネットワークであるSyNetを提案する。
ビルディングブロックとして、センシング戦略とともに、プリトレーニング特徴抽出器を備えたセンタネットおよびカスケードr−cnnを利用する。
提案手法により得られた技術成果を2つの異なるデータセットで報告する。
論文 参考訳(メタデータ) (2020-12-23T21:38:32Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。