論文の概要: View-decoupled Transformer for Person Re-identification under Aerial-ground Camera Network
- arxiv url: http://arxiv.org/abs/2403.14513v1
- Date: Thu, 21 Mar 2024 16:08:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:29:56.824926
- Title: View-decoupled Transformer for Person Re-identification under Aerial-ground Camera Network
- Title(参考訳): 空中カメラネットワーク下での人物識別のためのビュー分離変換器
- Authors: Quan Zhang, Lei Wang, Vishal M. Patel, Xiaohua Xie, Jianhuang Lai,
- Abstract要約: 地上人物再識別のための簡易かつ効果的なフレームワークとして,ビューデカップリングトランス (VDT) が提案されている。
2つの主要なコンポーネントは、ビュー関連とビュー非関連の機能を切り離すためにVDTで設計されている。
さらに,5/8の空中/地上カメラ,5,000のアイデンティティ,108,563のイメージからなる大規模AGPReIDデータセットCARGOをコントリビュートした。
- 参考スコア(独自算出の注目度): 87.36616083812058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing person re-identification methods have achieved remarkable advances in appearance-based identity association across homogeneous cameras, such as ground-ground matching. However, as a more practical scenario, aerial-ground person re-identification (AGPReID) among heterogeneous cameras has received minimal attention. To alleviate the disruption of discriminative identity representation by dramatic view discrepancy as the most significant challenge in AGPReID, the view-decoupled transformer (VDT) is proposed as a simple yet effective framework. Two major components are designed in VDT to decouple view-related and view-unrelated features, namely hierarchical subtractive separation and orthogonal loss, where the former separates these two features inside the VDT, and the latter constrains these two to be independent. In addition, we contribute a large-scale AGPReID dataset called CARGO, consisting of five/eight aerial/ground cameras, 5,000 identities, and 108,563 images. Experiments on two datasets show that VDT is a feasible and effective solution for AGPReID, surpassing the previous method on mAP/Rank1 by up to 5.0%/2.7% on CARGO and 3.7%/5.2% on AG-ReID, keeping the same magnitude of computational complexity. Our project is available at https://github.com/LinlyAC/VDT-AGPReID
- Abstract(参考訳): 既存の人物再識別手法は、地上マッチングのような均一なカメラ間での外観に基づくアイデンティティーアソシエーションにおいて顕著な進歩を遂げている。
しかし、より現実的なシナリオとして、異機種カメラにおける地上人物再識別(AGPReID)は最小限の注目を集めている。
AGPReIDの最も重要な課題として、劇的視点差による識別的アイデンティティ表現の破壊を緩和するために、ビュー分離変換器(VDT)をシンプルで効果的なフレームワークとして提案する。
2つの主要なコンポーネントは、ビュー関連とビュー非関連の特徴、すなわち階層的な部分的分離と直交的損失を分離するためにVDTで設計され、前者はVDT内でこれらの2つの特徴を分離し、後者はこれら2つの特徴を独立に制約する。
さらに,5/8の空中/地上カメラ,5,000のアイデンティティ,108,563のイメージからなる大規模AGPReIDデータセットCARGOをコントリビュートした。
2つのデータセットの実験では、VDTはAGPReIDの実用的で効果的な解であり、CARGOでは最大5.0%/2.7%、AG-ReIDでは3.7%/5.2%、計算複雑性は同じ程度である。
私たちのプロジェクトはhttps://github.com/LinlyAC/VDT-AGPReIDで利用可能です。
関連論文リスト
- Synthesizing Efficient Data with Diffusion Models for Person Re-Identification Pre-Training [51.87027943520492]
本稿では,既知の同一性に基づく多様な画像の効率向上と生成を行う新しいパラダイムDiffusion-ReIDを提案する。
提案したパラダイムに適合して,まず,5,183個のIDから777K以上の画像で構成された,大規模なRe-IDデータセットDiff-Personを新たに作成する。
論文 参考訳(メタデータ) (2024-06-10T06:26:03Z) - AG-ReID.v2: Bridging Aerial and Ground Views for Person Re-identification [39.58286453178339]
空中人物再識別(Re-ID)は、コンピュータビジョンにおいて固有の課題を提示する。
AG-ReID.v2は、空中および地上の混合シナリオにおいて、人物Re-ID用に特別に設計されたデータセットである。
このデータセットは、1,615人のユニークな個人の100,502枚の画像で構成され、それぞれに一致するIDと15のソフト属性ラベルが付加されている。
論文 参考訳(メタデータ) (2024-01-05T04:53:33Z) - Learning Invariance from Generated Variance for Unsupervised Person
Re-identification [15.096776375794356]
従来のデータ拡張をGAN(Generative Adversarial Network)に置き換えることを提案する。
3次元メッシュガイド型人物画像生成器は、人物画像をID関連およびID非関連の特徴に分解するために提案される。
生成モジュールとコントラストモジュールを共同でトレーニングすることにより、主流の大規模ベンチマーク上で、最先端の非教師なしのReID性能を実現する。
論文 参考訳(メタデータ) (2023-01-02T15:40:14Z) - Dual-Stream Reciprocal Disentanglement Learning for Domain Adaption
Person Re-Identification [44.80508095481811]
本稿では,Dual-stream Reciprocal Disentanglement Learning (DRDL) という新しい手法を提案する。
DRDLでは、まず2つのエンコーダがID関連およびID非関連の特徴抽出のために構築され、それぞれ関連する分類器によって測定される。
提案手法は,計算複雑性を著しく低減するだけでなく,ID関連の特徴から冗長な情報を除去する。
論文 参考訳(メタデータ) (2021-06-26T03:05:23Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
教師なし表現学習は、オブジェクトディテクタの事前トレーニング表現で有望なパフォーマンスを実現します。
本研究では,オブジェクト検出のための簡易かつ効果的な表現学習手法であるパッチ再識別(Re-ID)を提案する。
私たちの方法は、トレーニングの反復やデータパーセンテージなど、すべての設定でCOCOの同等を大幅に上回ります。
論文 参考訳(メタデータ) (2021-03-08T15:13:59Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
本稿では、アノテーションを必要としない純粋に教師なしの人物識別(Re-ID)問題に取り組む。
各クラスタを複数のプロキシに分割し、それぞれのプロキシが同じカメラからのインスタンスを表すことを提案する。
カメラ認識プロキシに基づいて、カメラ内およびカメラ間コントラスト学習コンポーネントをre-idモデル用に設計する。
論文 参考訳(メタデータ) (2020-12-19T12:37:04Z) - DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition [85.94331736287765]
我々は、HFRを二重生成問題として定式化し、新しいDual Variational Generation(DVG-Face)フレームワークを用いてそれに取り組む。
大規模可視データの豊富なアイデンティティ情報を結合分布に統合する。
同一の同一性を持つ多種多様な多種多様な画像は、ノイズから生成することができる。
論文 参考訳(メタデータ) (2020-09-20T09:48:24Z) - Towards Precise Intra-camera Supervised Person Re-identification [54.86892428155225]
人物の再識別(Re-ID)のためのカメラ内監視(ICS)は、アイデンティティラベルが各カメラビュー内に独立してアノテートされていると仮定する。
カメラ間ラベルの欠如により、ICS Re-ID問題は、完全に監督されたラベルよりもはるかに難しい。
われわれの手法は、2つのデータセットで最先端の完全教師付き手法に匹敵する性能を発揮する。
論文 参考訳(メタデータ) (2020-02-12T11:56:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。