3D Cross Pseudo Supervision (3D-CPS): A semi-supervised nnU-Net
architecture for abdominal organ segmentation
- URL: http://arxiv.org/abs/2209.08939v1
- Date: Mon, 19 Sep 2022 11:46:43 GMT
- Title: 3D Cross Pseudo Supervision (3D-CPS): A semi-supervised nnU-Net
architecture for abdominal organ segmentation
- Authors: Yongzhi Huang, Hanwen Zhang, Yan Yan, Haseeb Hassan, Bingding Huang
- Abstract summary: We propose a new 3D Cross Pseudo Supervision (3D-CPS) method, a semi-supervised network architecture based on nnU-Net with the Cross Pseudo Supervision method.
Our proposed method achieves an average dice similarity coefficient (DSC) of 0.881 and an average normalized surface distance (NSD) of 0.913 on the MICCAI FLARE2022 validation set.
- Score: 8.538887194517763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large curated datasets are necessary, but annotating medical images is a
time-consuming, laborious, and expensive process. Therefore, recent supervised
methods are focusing on utilizing a large amount of unlabeled data. However, to
do so, is a challenging task. To address this problem, we propose a new 3D
Cross Pseudo Supervision (3D-CPS) method, a semi-supervised network
architecture based on nnU-Net with the Cross Pseudo Supervision method. We
design a new nnU-Net based preprocessing method and adopt the forced spacing
settings strategy in the inference stage to speed up the inference time. In
addition, we set the semi-supervised loss weights to expand linearity with each
epoch to prevent the model from low-quality pseudo-labels in the early training
process. Our proposed method achieves an average dice similarity coefficient
(DSC) of 0.881 and an average normalized surface distance (NSD) of 0.913 on the
MICCAI FLARE2022 validation set (20 cases).
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Towards Label-free Scene Understanding by Vision Foundation Models [87.13117617056004]
We investigate the potential of vision foundation models in enabling networks to comprehend 2D and 3D worlds without labelled data.
We propose a novel Cross-modality Noisy Supervision (CNS) method that leverages the strengths of CLIP and SAM to supervise 2D and 3D networks simultaneously.
Our 2D and 3D network achieves label-free semantic segmentation with 28.4% and 33.5% mIoU on ScanNet, improving 4.7% and 7.9%, respectively.
arXiv Detail & Related papers (2023-06-06T17:57:49Z) - Semi-Supervised Single-View 3D Reconstruction via Prototype Shape Priors [79.80916315953374]
We propose SSP3D, a semi-supervised framework for 3D reconstruction.
We introduce an attention-guided prototype shape prior module for guiding realistic object reconstruction.
Our approach also performs well when transferring to real-world Pix3D datasets under labeling ratios of 10%.
arXiv Detail & Related papers (2022-09-30T11:19:25Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - SSP-Net: Scalable Sequential Pyramid Networks for Real-Time 3D Human
Pose Regression [27.85790535227085]
We propose a highly scalable convolutional neural network, end-to-end trainable, for real-time 3D human pose regression from still RGB images.
Our network requires a single training procedure and is capable of producing its best predictions at 120 frames per second.
arXiv Detail & Related papers (2020-09-04T03:43:24Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - Human Body Model Fitting by Learned Gradient Descent [48.79414884222403]
We propose a novel algorithm for the fitting of 3D human shape to images.
We show that this algorithm is fast (avg. 120ms convergence), robust to dataset, and achieves state-of-the-art results on public evaluation datasets.
arXiv Detail & Related papers (2020-08-19T14:26:47Z) - Uniformizing Techniques to Process CT scans with 3D CNNs for
Tuberculosis Prediction [5.270882613122642]
A common approach to medical image analysis on volumetric data uses deep 2D convolutional neural networks (CNNs)
dealing with the individual slices independently in 2D CNNs deliberately discards the depth information which results in poor performance for the intended task.
We evaluate a set of volume uniformizing methods to address the aforementioned issues.
We report 73% area under curve (AUC) and binary classification accuracy (ACC) of 67.5% on the test set beating all methods which leveraged only image information.
arXiv Detail & Related papers (2020-07-26T21:53:47Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
We propose a novel system named Disp R-CNN for 3D object detection from stereo images.
We use a statistical shape model to generate dense disparity pseudo-ground-truth without the need of LiDAR point clouds.
Experiments on the KITTI dataset show that, even when LiDAR ground-truth is not available at training time, Disp R-CNN achieves competitive performance and outperforms previous state-of-the-art methods by 20% in terms of average precision.
arXiv Detail & Related papers (2020-04-07T17:48:45Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
We present a point-based 3D single stage object detector, named 3DSSD, achieving a good balance between accuracy and efficiency.
Our method outperforms all state-of-the-art voxel-based single stage methods by a large margin, and has comparable performance to two stage point-based methods as well.
arXiv Detail & Related papers (2020-02-24T12:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.