論文の概要: Use Classifier as Generator
- arxiv url: http://arxiv.org/abs/2209.09210v1
- Date: Sat, 10 Sep 2022 18:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 17:31:37.121862
- Title: Use Classifier as Generator
- Title(参考訳): ジェネレータとしての利用分類器
- Authors: Haoyang Li
- Abstract要約: 本稿では,通常訓練された分類器を直接使用して画像を生成する簡単な手法を提案する。
提案手法をMNISTで評価し, 実験により, 品質に限界のある人間の目に対して認識可能な結果が得られることを示した。
- 参考スコア(独自算出の注目度): 3.8238126600316185
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image recognition/classification is a widely studied problem, but its reverse
problem, image generation, has drawn much less attention until recently. But
the vast majority of current methods for image generation require
training/retraining a classifier and/or a generator with certain constraints,
which can be hard to achieve. In this paper, we propose a simple approach to
directly use a normally trained classifier to generate images. We evaluate our
method on MNIST and show that it produces recognizable results for human eyes
with limited quality with experiments.
- Abstract(参考訳): 画像認識/分類は広く研究されている問題であるが、その逆問題である画像生成は近年まで注目されていない。
しかし、現在の画像生成のほとんどの方法は、特定の制約のある分類器やジェネレータを訓練/再訓練する必要がある。
本稿では,通常訓練された分類器を用いて画像を生成するための簡易な手法を提案する。
提案手法をMNISTで評価し,実験により人間の目に対する認識可能な結果が得られた。
関連論文リスト
- Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
従来のニューラルネットワーク分類器は、最先端の生成モデルに匹敵する高品質な画像を生成することができることを示す。
マスクをベースとした再構成モジュールを提案し, 意味的勾配を意識し, 可視画像の合成を行う。
また,本手法は,画像テキスト基盤モデルに関して,テキスト・画像生成にも適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T11:25:35Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Reinforcing Generated Images via Meta-learning for One-Shot Fine-Grained
Visual Recognition [36.02360322125622]
生成した画像と原画像を組み合わせるメタラーニングフレームワークを提案し,その結果の「ハイブリッド」訓練画像がワンショット学習を改善する。
実験では,1ショットのきめ細かい画像分類ベンチマークにおいて,ベースラインよりも一貫した改善が示された。
論文 参考訳(メタデータ) (2022-04-22T13:11:05Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。