論文の概要: Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies
- arxiv url: http://arxiv.org/abs/2501.02207v1
- Date: Sat, 04 Jan 2025 06:23:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:28.114444
- Title: Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies
- Title(参考訳): AI生成顔の異常検出のための自己教師付き学習
- Authors: Mian Zou, Baosheng Yu, Yibing Zhan, Kede Ma,
- Abstract要約: 本稿では、写真顔画像から純粋にカメラ固有の特徴と顔特有の特徴の自己教師付き学習を活用することで、AI生成顔の異常検出手法について述べる。
提案手法の成功は,特徴抽出器を訓練して4つの通常交換可能な画像ファイルフォーマット(EXIF)をランク付けし,人工的に操作された顔画像の分類を行うプリテキストタスクを設計することにある。
- 参考スコア(独自算出の注目度): 58.11545090128854
- License:
- Abstract: The detection of AI-generated faces is commonly approached as a binary classification task. Nevertheless, the resulting detectors frequently struggle to adapt to novel AI face generators, which evolve rapidly. In this paper, we describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images. The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images. Subsequently, we model the learned feature distribution of photographic face images using a Gaussian mixture model. Faces with low likelihoods are flagged as AI-generated. Both quantitative and qualitative experiments validate the effectiveness of our method. Our code is available at \url{https://github.com/MZMMSEC/AIGFD_EXIF.git}.
- Abstract(参考訳): AI生成顔の検出は、バイナリ分類タスクとして一般的にアプローチされる。
それでも、結果として生じる検出器は、急速に進化する新しいAIフェイスジェネレータに適応するのにしばしば苦労する。
本稿では、写真顔画像から純粋にカメラ固有の特徴と顔特有の特徴の自己教師付き学習を活用することにより、AI生成顔の異常検出手法について述べる。
提案手法の成功は,特徴抽出器を訓練して4つの通常交換可能な画像ファイルフォーマット(EXIF)をランク付けし,人工的に操作された顔画像の分類を行うプリテキストタスクを設計することにある。
次に、ガウス混合モデルを用いて、写真顔画像の特徴分布をモデル化する。
可能性の低い顔はAI生成としてフラグ付けされる。
定量的および定性的な実験により,本手法の有効性が検証された。
我々のコードは \url{https://github.com/MZMMSEC/AIGFD_EXIF.git} で入手できる。
関連論文リスト
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
本稿では,AIによる画像検出の課題が解決されたかどうかの検査を行う。
既存の手法の一般化を定量化するために,Chameleonデータセット上で,既製のAI生成画像検出器を9つ評価した。
複数の専門家が同時に視覚的アーチファクトやノイズパターンを抽出するAI生成画像検出装置(AID)を提案する。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark [12.368133562194267]
AI-Faceデータセットは、人口統計学的にアノテートされた最初のAI生成顔画像データセットである。
このデータセットに基づいて、さまざまなAI顔検出装置を評価するために、最初の総合的公正度ベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-02T15:51:33Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Finding AI-Generated Faces in the Wild [9.390562437823078]
私たちは、AIが生成した顔と実際の顔を区別する、より狭いタスクに重点を置いています。
これは、不正なオンラインアカウントを偽のユーザープロフィール写真で扱う場合に特に当てはまる。
顔のみに焦点を合わせることで、よりレジリエントで汎用的なアーティファクトを検出することができることを示す。
論文 参考訳(メタデータ) (2023-11-14T22:46:01Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - FACE-AUDITOR: Data Auditing in Facial Recognition Systems [24.082527732931677]
顔画像を扱うスケーラビリティと能力のために、ショットベースの顔認識システムが注目されている。
顔画像の誤使用を防止するために、簡単なアプローチとして、生の顔画像を共有する前に修正する方法がある。
そこで本研究では,FACE-AUDITORの完全ツールキットを提案する。このツールキットは,少数ショットベースの顔認識モデルに問い合わせ,ユーザの顔画像のいずれかがモデルのトレーニングに使用されているかどうかを判断する。
論文 参考訳(メタデータ) (2023-04-05T23:03:54Z) - Deepfake Forensics via An Adversarial Game [99.84099103679816]
顔偽造と画像・映像品質の両面での一般化能力向上のための対人訓練を提唱する。
AIベースの顔操作は、しばしば、一般化が困難であるモデルによって容易に発見できる高周波アーティファクトにつながることを考慮し、これらの特定のアーティファクトを曖昧にしようとする新しい逆トレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-03-25T02:20:08Z) - One-Shot GAN Generated Fake Face Detection [3.3707422585608953]
本稿では,汎用的なワンショットGAN生成顔検出手法を提案する。
提案手法は,シーン理解モデルを用いて顔から文脈外オブジェクトを抽出する。
実験の結果,文脈外の特徴の観点から,偽の顔と現実の顔とを識別できることが判明した。
論文 参考訳(メタデータ) (2020-03-27T05:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。