論文の概要: Flexible Neural Image Compression via Code Editing
- arxiv url: http://arxiv.org/abs/2209.09244v1
- Date: Mon, 19 Sep 2022 09:41:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 18:10:25.285802
- Title: Flexible Neural Image Compression via Code Editing
- Title(参考訳): コード編集によるフレキシブルニューラルネットワーク圧縮
- Authors: Chenjian Gao, Tongda Xu, Dailan He, Hongwei Qin, Yan Wang
- Abstract要約: ニューラル画像圧縮(NIC)は、レート歪み(R-D)性能において従来の画像コーデックよりも優れていた。
通常、R-D曲線の各点に専用エンコーダとデコーダのペアが必要であるため、実際の展開を妨げている。
本稿では,セミアモタイズされた推論と適応量子化に基づくNICの高フレキシブルな符号化手法であるCode Editingを提案する。
- 参考スコア(独自算出の注目度): 8.499248314440557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural image compression (NIC) has outperformed traditional image codecs in
rate-distortion (R-D) performance. However, it usually requires a dedicated
encoder-decoder pair for each point on R-D curve, which greatly hinders its
practical deployment. While some recent works have enabled bitrate control via
conditional coding, they impose strong prior during training and provide
limited flexibility. In this paper we propose Code Editing, a highly flexible
coding method for NIC based on semi-amortized inference and adaptive
quantization. Our work is a new paradigm for variable bitrate NIC. Furthermore,
experimental results show that our method surpasses existing variable-rate
methods, and achieves ROI coding and multi-distortion trade-off with a single
decoder.
- Abstract(参考訳): ニューラルイメージ圧縮(nic)はr-d性能で従来の画像コーデックを上回っている。
しかし、通常はR-D曲線の各点に専用エンコーダとデコーダのペアが必要であるため、実際の展開を著しく妨げている。
最近の研究では、条件付きコーディングによるビットレート制御が可能になっているが、トレーニング中に強いプリエントを課し、柔軟性が制限されている。
本稿では,セミアモルト化推論と適応量子化に基づくNICの高柔軟性符号化法であるCode Editingを提案する。
私たちの仕事は、可変ビットレートNICの新しいパラダイムです。
さらに,提案手法は既存の可変レート法を超越し,単一デコーダによるROI符号化とマルチ歪みトレードオフを実現することを示す。
関連論文リスト
- Rate-Distortion-Cognition Controllable Versatile Neural Image Compression [47.72668401825835]
速度歪み認識制御可能な多目的画像圧縮法を提案する。
本手法は, 良好なICM性能とフレキシブルレート・ディストーション・コグニテーション制御を実現する。
論文 参考訳(メタデータ) (2024-07-16T13:17:51Z) - Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [57.056311855630916]
本稿では,制御可能な生成画像圧縮フレームワークである制御-GICを提案する。
高忠実度および一般性圧縮を確保しつつ、広帯域での微粒化適応を可能にする。
我々は、歴史的符号化された多粒度表現に遡ることができる条件条件付き条件付けを開発する。
論文 参考訳(メタデータ) (2024-06-02T14:22:09Z) - Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
本研究では,デコーダとして使用する場合,条件拡散モデルが生成圧縮タスクにおいて有望な結果をもたらすことを示す。
本稿では,デコーダとして使用する場合,条件拡散モデルが生成圧縮タスクにおいて有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2024-03-05T11:48:35Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Substitutional Neural Image Compression [48.20906717052056]
置換型ニューラルイメージ圧縮(snic)は、あらゆるニューラルイメージ圧縮モデルを強化する一般的なアプローチである。
フレキシブルな歪みメトリックに向けて圧縮性能を高め、単一のモデルインスタンスを使用したビットレート制御を可能にする。
論文 参考訳(メタデータ) (2021-05-16T20:53:31Z) - Learned Multi-Resolution Variable-Rate Image Compression with
Octave-based Residual Blocks [15.308823742699039]
一般化オクターブ畳み込み(GoConv)と一般化オクターブ畳み込み(GoTConv)を用いた新しい可変レート画像圧縮フレームワークを提案する。
単一モデルが異なるビットレートで動作し、複数レートの画像特徴を学習できるようにするため、新しい目的関数が導入される。
実験結果から,H.265/HEVCベースのBPGや最先端の学習に基づく可変レート法などの標準コーデックよりも高い性能を示した。
論文 参考訳(メタデータ) (2020-12-31T06:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。