Self-supervised 3D Object Detection from Monocular Pseudo-LiDAR
- URL: http://arxiv.org/abs/2209.09486v1
- Date: Tue, 20 Sep 2022 05:55:49 GMT
- Title: Self-supervised 3D Object Detection from Monocular Pseudo-LiDAR
- Authors: Curie Kim, Ue-Hwan Kim, Jong-Hwan Kim
- Abstract summary: We propose a method for predicting absolute depth and detecting 3D objects using only monocular image sequences.
As a result, the proposed method surpasses other existing methods in performance on the KITTI 3D dataset.
- Score: 9.361704310981196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been attempts to detect 3D objects by fusion of stereo camera
images and LiDAR sensor data or using LiDAR for pre-training and only monocular
images for testing, but there have been less attempts to use only monocular
image sequences due to low accuracy. In addition, when depth prediction using
only monocular images, only scale-inconsistent depth can be predicted, which is
the reason why researchers are reluctant to use monocular images alone.
Therefore, we propose a method for predicting absolute depth and detecting 3D
objects using only monocular image sequences by enabling end-to-end learning of
detection networks and depth prediction networks. As a result, the proposed
method surpasses other existing methods in performance on the KITTI 3D dataset.
Even when monocular image and 3D LiDAR are used together during training in an
attempt to improve performance, ours exhibit is the best performance compared
to other methods using the same input. In addition, end-to-end learning not
only improves depth prediction performance, but also enables absolute depth
prediction, because our network utilizes the fact that the size of a 3D object
such as a car is determined by the approximate size.
Related papers
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Depth Estimation Matters Most: Improving Per-Object Depth Estimation for
Monocular 3D Detection and Tracking [47.59619420444781]
Approaches to monocular 3D perception including detection and tracking often yield inferior performance when compared to LiDAR-based techniques.
We propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation.
arXiv Detail & Related papers (2022-06-08T03:37:59Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z) - MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object
Detection Algorithm [4.958840734249869]
This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification.
Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks.
arXiv Detail & Related papers (2022-01-12T07:11:18Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
We propose a stereo-guided monocular 3D object detection network, termed SGM3D.
We exploit robust 3D features extracted from stereo images to enhance the features learned from the monocular image.
Our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.
arXiv Detail & Related papers (2021-12-03T13:57:14Z) - Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR [22.202192422883122]
We propose a novel two-stage network to advance the self-supervised monocular dense depth learning.
Our model fuses monocular image features and sparse LiDAR features to predict initial depth maps.
Our model outperforms the state-of-the-art sparse-LiDAR-based method (Pseudo-LiDAR++) by more than 68% for the downstream task monocular 3D object detection.
arXiv Detail & Related papers (2021-09-20T15:28:36Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
We propose a rendering module to augment the training data by synthesizing images with virtual-depths.
The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images.
Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task.
arXiv Detail & Related papers (2021-07-28T11:00:47Z) - Categorical Depth Distribution Network for Monocular 3D Object Detection [7.0405916639906785]
Key challenge in monocular 3D detection is accurately predicting object depth.
Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy.
We propose Categorical Depth Distribution Network (CaDDN) to project rich contextual feature information to the appropriate depth interval in 3D space.
We validate our approach on the KITTI 3D object detection benchmark, where we rank 1st among published monocular methods.
arXiv Detail & Related papers (2021-03-01T16:08:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.