論文の概要: On a Uniform Causality Model for Industrial Automation
- arxiv url: http://arxiv.org/abs/2209.09618v1
- Date: Tue, 20 Sep 2022 11:23:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 18:29:17.958995
- Title: On a Uniform Causality Model for Industrial Automation
- Title(参考訳): 産業自動化のための一様因果モデルについて
- Authors: Maria Krantz, Alexander Windmann, Rene Heesch, Lukas Moddemann, Oliver
Niggemann
- Abstract要約: 産業自動化の様々な応用分野に対する一様因果モデルを提案する。
得られたモデルは、サイバー物理システムの振る舞いを数学的に記述する。
このモデルは、機械学習に焦点を当てた産業自動化における新しいアプローチの応用の基盤として機能することが示されている。
- 参考スコア(独自算出の注目度): 61.303828551910634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing complexity of Cyber-Physical Systems (CPS) makes industrial
automation challenging. Large amounts of data recorded by sensors need to be
processed to adequately perform tasks such as diagnosis in case of fault. A
promising approach to deal with this complexity is the concept of causality.
However, most research on causality has focused on inferring causal relations
between parts of an unknown system. Engineering uses causality in a
fundamentally different way: complex systems are constructed by combining
components with known, controllable behavior. As CPS are constructed by the
second approach, most data-based causality models are not suited for industrial
automation. To bridge this gap, a Uniform Causality Model for various
application areas of industrial automation is proposed, which will allow better
communication and better data usage across disciplines. The resulting model
describes the behavior of CPS mathematically and, as the model is evaluated on
the unique requirements of the application areas, it is shown that the Uniform
Causality Model can work as a basis for the application of new approaches in
industrial automation that focus on machine learning.
- Abstract(参考訳): サイバーフィジカルシステム(cps)の複雑さの増大は、産業の自動化を困難にしている。
センサが記録した大量のデータを処理して、故障の診断などのタスクを適切に実行する必要がある。
この複雑さを扱うための有望なアプローチは因果性の概念である。
しかし、因果関係に関するほとんどの研究は、未知のシステムの部分間の因果関係の推測に焦点を当てている。
複雑なシステムはコンポーネントと既知の制御可能な振る舞いを組み合わせることで構築されます。
CPSは第2のアプローチで構築されているため、ほとんどのデータベースの因果関係モデルは産業自動化には適していない。
このギャップを埋めるために,産業オートメーションのさまざまな応用分野に対して,統一的な因果関係モデルが提案されている。
その結果、cpsの挙動を数学的に記述し、そのモデルがアプリケーション領域のユニークな要件に基づいて評価されていることから、一様因果関係モデルが機械学習に焦点をあてた産業オートメーションにおける新しいアプローチの適用の基盤として機能することが示されている。
関連論文リスト
- AAD-LLM: Adaptive Anomaly Detection Using Large Language Models [35.286105732902065]
本研究は,Large Language Models (LLMs) を利用した異常検出モデルの伝達性の向上を目的とする。
この研究はまた、モデルとプラントオペレーターの間でより協調的な意思決定を可能にすることを目指している。
論文 参考訳(メタデータ) (2024-11-01T13:43:28Z) - Inferring the time-varying coupling of dynamical systems with temporal convolutional autoencoders [0.0]
因果推論のためのテンポラルオートエンコーダ(TACI)を紹介する。
TACIは、2つの頭を持つ新しい機械学習アーキテクチャと因果関係を評価するために、新しい代理データメトリクスを組み合わせる。
TACIが様々なシステム間で動的因果相互作用を正確に定量化できることを実証する。
論文 参考訳(メタデータ) (2024-06-05T12:51:20Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
異常検出は、産業制御システムの安全かつ信頼性の高い運用に不可欠である。
本稿では,このニーズを満たすための新しい深層生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-03T23:58:27Z) - Few-shot Detection of Anomalies in Industrial Cyber-Physical System via
Prototypical Network and Contrastive Learning [5.9990208840809345]
本稿では,プロトタイプネットワークとコントラスト学習に基づく数ショットの異常検出モデルを提案する。
本モデルでは,異常信号を特定するために,F1スコアを大幅に改善し,誤警報率(FAR)を低減できることを示す。
論文 参考訳(メタデータ) (2023-02-21T11:09:36Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
ドイツにあるTrumpf工場に配備されたレーザー切断機から発生するネットワークトラフィックデータについて検討した。
我々は、トラフィック統計を分析し、マシンの内部状態間の依存関係をキャプチャし、ネットワークトラフィックを生産状態依存プロセスとしてモデル化する。
可変オートエンコーダ(VAE)、条件付き可変オートエンコーダ(CVAE)、生成逆ネットワーク(GAN)など、様々な生成モデルの性能の比較を行った。
論文 参考訳(メタデータ) (2022-11-11T09:46:58Z) - Grasping Causality for the Explanation of Criticality for Automated
Driving [0.0]
本研究では,自動走行における安全関連要因の因果的理解を促進する因果的クエリの形式化を提案する。
ジュデア・パールの因果論に基づいて、因果関係を文脈とともに因果構造として定義する。
因果クエリに対する応答を正当に推定するには,データの可用性と品質が不可欠であるため,実世界および合成データ取得の要件についても論じる。
論文 参考訳(メタデータ) (2022-10-27T12:37:00Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。