論文の概要: Hybrid Temporal Differential Consistency Autoencoder for Efficient and Sustainable Anomaly Detection in Cyber-Physical Systems
- arxiv url: http://arxiv.org/abs/2504.06320v1
- Date: Tue, 08 Apr 2025 09:22:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 00:51:15.263852
- Title: Hybrid Temporal Differential Consistency Autoencoder for Efficient and Sustainable Anomaly Detection in Cyber-Physical Systems
- Title(参考訳): サイバー物理システムにおける高効率かつ持続可能な異常検出のためのハイブリッド時間差分整合オートエンコーダ
- Authors: Michael Somma,
- Abstract要約: 重要なインフラ、特に配水システムに対するサイバー攻撃は、急速なデジタル化により増加した。
本研究では,センサデータの時間相関を利用した異常検出における重要な課題に対処する。
本稿では,決定論的ノードと従来の統計ノードの両方を組み込んでTDCを拡張するハイブリッドTDC-AEという,ハイブリッドオートエンコーダに基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyberattacks on critical infrastructure, particularly water distribution systems, have increased due to rapid digitalization and the integration of IoT devices and industrial control systems (ICS). These cyber-physical systems (CPS) introduce new vulnerabilities, requiring robust and automated intrusion detection systems (IDS) to mitigate potential threats. This study addresses key challenges in anomaly detection by leveraging time correlations in sensor data, integrating physical principles into machine learning models, and optimizing computational efficiency for edge applications. We build upon the concept of temporal differential consistency (TDC) loss to capture the dynamics of the system, ensuring meaningful relationships between dynamic states. Expanding on this foundation, we propose a hybrid autoencoder-based approach, referred to as hybrid TDC-AE, which extends TDC by incorporating both deterministic nodes and conventional statistical nodes. This hybrid structure enables the model to account for non-deterministic processes. Our approach achieves state-of-the-art classification performance while improving time to detect anomalies by 3%, outperforming the BATADAL challenge leader without requiring domain-specific knowledge, making it broadly applicable. Additionally, it maintains the computational efficiency of conventional autoencoders while reducing the number of fully connected layers, resulting in a more sustainable and efficient solution. The method demonstrates how leveraging physics-inspired consistency principles enhances anomaly detection and strengthens the resilience of cyber-physical systems.
- Abstract(参考訳): 重要なインフラ、特に配水システムに対するサイバー攻撃は、急速なデジタル化とIoTデバイスと産業制御システム(ICS)の統合により増加した。
これらのサイバー物理システム(CPS)は新たな脆弱性を導入し、潜在的な脅威を軽減するために堅牢で自動化された侵入検知システム(IDS)を必要とする。
本研究では,センサデータの時間相関を利用し,物理原理を機械学習モデルに統合し,エッジアプリケーションの計算効率を最適化することにより,異常検出における重要な課題に対処する。
本研究では、時間差分整合(TDC)損失の概念に基づいて、システムのダイナミクスを捉え、動的状態間の有意義な関係性を保証する。
本研究は,TDC-AEと呼ばれるハイブリッドオートエンコーダに基づく手法を提案し,決定論的ノードと従来の統計ノードを併用してTDCを拡張した。
このハイブリッド構造により、モデルは非決定論的プロセスを考慮することができる。
提案手法は,最先端の分類性能を向上しつつ,異常検出時間を3%改善し,ドメイン固有の知識を必要とせず,BATADALチャレンジリーダよりも優れ,広く適用可能である。
さらに、従来のオートエンコーダの計算効率を維持しながら、完全に接続されたレイヤーの数を減らし、より持続的で効率的な解が得られる。
本手法は,物理に着想を得た整合性原理の活用によって異常検出が促進され,サイバー物理システムのレジリエンスが向上することを示す。
関連論文リスト
- Distributed Log-driven Anomaly Detection System based on Evolving Decision Making [4.183506125389502]
CEDLogは、Apache AirflowとDaskを統合することで、スケーラブルな処理のために分散コンピューティングを実装するフレームワークである。
CEDLogでは、イベントログに存在する重要な特徴を用いて、多層パーセプトロン(MLP)とグラフ畳み込みネットワーク(GCN)の合成によって異常を検出する。
論文 参考訳(メタデータ) (2025-04-03T06:50:30Z) - Anomaly Detection in Complex Dynamical Systems: A Systematic Framework Using Embedding Theory and Physics-Inspired Consistency [0.0]
複雑な力学系における異常検出は、産業やサイバー物理のインフラにおける信頼性、安全性、効率を確保するために不可欠である。
本稿では,古典的な埋め込み理論と物理に着想を得た一貫性原理を基礎としたシステム理論による異常検出手法を提案する。
本研究は, 異常が安定系の力学を阻害する仮説を支持し, 異常検出のための頑健かつ解釈可能な信号を提供する。
論文 参考訳(メタデータ) (2025-02-26T17:06:13Z) - Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations [0.0]
提案したADフレームワークとHITLベースのADフレームワークの比較評価を行うために,高度なパフォーマンス指標を採用している。
このアプローチは、サイバーセキュリティの課題が進展する中で、電力系統運用の信頼性を高めるための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-09T18:38:35Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することにより、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
GenAIはDTの構築と更新を推進し、予測精度を改善し、多様なスマート製造に備える。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Grid Monitoring with Synchro-Waveform and AI Foundation Model Technologies [41.994460245857404]
本稿では,インバータ資源が支配する将来のグリッドを対象とした次世代グリッド監視制御システムの開発を提唱する。
我々は,高分解能シンクロ波形計測技術を用いた物理ベースのAI基盤モデルを構築し,グリッドのレジリエンスを高め,機能停止による経済的損失を低減する。
論文 参考訳(メタデータ) (2024-03-11T17:28:46Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - On a Uniform Causality Model for Industrial Automation [61.303828551910634]
産業自動化の様々な応用分野に対する一様因果モデルを提案する。
得られたモデルは、サイバー物理システムの振る舞いを数学的に記述する。
このモデルは、機械学習に焦点を当てた産業自動化における新しいアプローチの応用の基盤として機能することが示されている。
論文 参考訳(メタデータ) (2022-09-20T11:23:51Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。