論文の概要: Streaming Encoding Algorithms for Scalable Hyperdimensional Computing
- arxiv url: http://arxiv.org/abs/2209.09868v2
- Date: Wed, 21 Sep 2022 00:45:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 12:25:02.192374
- Title: Streaming Encoding Algorithms for Scalable Hyperdimensional Computing
- Title(参考訳): スケーラブル超次元計算のためのストリーミング符号化アルゴリズム
- Authors: Anthony Thomas, Behnam Khaleghi, Gopi Krishna Jha, Sanjoy Dasgupta,
Nageen Himayat, Ravi Iyer, Nilesh Jain, and Tajana Rosing
- Abstract要約: 超次元コンピューティング(Hyperdimensional Computing、HDC)は、計算神経科学を起源とするデータ表現と学習のパラダイムである。
そこで本研究では,ハッシュに基づくストリーミング符号化手法のファミリについて検討する。
我々は,これらの手法が既存の代替手段よりもはるかに効率的でありながら,学習アプリケーションの性能に匹敵する保証を享受できることを正式に示す。
- 参考スコア(独自算出の注目度): 12.829102171258882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperdimensional computing (HDC) is a paradigm for data representation and
learning originating in computational neuroscience. HDC represents data as
high-dimensional, low-precision vectors which can be used for a variety of
information processing tasks like learning or recall. The mapping to
high-dimensional space is a fundamental problem in HDC, and existing methods
encounter scalability issues when the input data itself is high-dimensional. In
this work, we explore a family of streaming encoding techniques based on
hashing. We show formally that these methods enjoy comparable guarantees on
performance for learning applications while being substantially more efficient
than existing alternatives. We validate these results experimentally on a
popular high-dimensional classification problem and show that our approach
easily scales to very large data sets.
- Abstract(参考訳): hyperdimensional computing (hdc) は、計算神経科学を起源とするデータ表現と学習のためのパラダイムである。
HDCはデータを高次元の低精度ベクトルとして表現し、学習やリコールといった様々な情報処理タスクに使用できる。
高次元空間へのマッピングはHDCの基本的な問題であり、入力データ自体が高次元である場合、既存の手法はスケーラビリティの問題に直面する。
本稿では,ハッシュ化に基づくストリーミングエンコーディング手法のファミリーについて検討する。
我々は,これらの手法が既存の代替手段よりもはるかに効率的でありながら,学習アプリケーションの性能に匹敵する保証を享受できることを正式に示す。
これらの結果を,一般的な高次元分類問題を用いて実験的に検証し,そのアプローチが大規模データセットに容易に拡張できることを示す。
関連論文リスト
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - An Encoding Framework for Binarized Images using HyperDimensional
Computing [0.0]
本稿では,近傍のパターンの類似性を保ったバイナライズされた画像を符号化する,新しい軽量化手法を提案する。
この方法は、MNISTデータセットのテストセットで97.35%、Fashion-MNISTデータセットで84.12%に達する。
論文 参考訳(メタデータ) (2023-12-01T09:34:28Z) - In search of the most efficient and memory-saving visualization of high
dimensional data [0.0]
多次元データの可視化は、非次元近傍グラフの2方向埋め込みをよく近似していると論じる。
既存のリダクション手法は遅すぎるため、インタラクティブな操作ができない。
高品質な埋め込みは、最小限の時間とメモリの複雑さで生成されることを示す。
論文 参考訳(メタデータ) (2023-02-27T20:56:13Z) - HDTorch: Accelerating Hyperdimensional Computing with GP-GPUs for Design
Space Exploration [4.783565770657063]
我々は、ハイパーベクタ操作の拡張を備えたPyTorchベースのオープンソースのHDCライブラリであるHDTorchを紹介する。
我々は4つのHDCベンチマークデータセットを精度、実行時間、メモリ消費の観点から分析する。
我々はCHB-MIT脳波てんかんデータベース全体のHDトレーニングと推測分析を行った。
論文 参考訳(メタデータ) (2022-06-09T19:46:08Z) - An Extension to Basis-Hypervectors for Learning from Circular Data in
Hyperdimensional Computing [62.997667081978825]
超次元計算(Hyperdimensional Computing、HDC)は、高次元ランダム空間の性質に基づく計算フレームワークである。
本稿では, 基本超ベクトル集合について検討し, 一般にHDCへの実践的貢献につながっている。
本稿では,HDCを用いた機械学習において,これまでに扱ったことのない重要な情報である円形データから学習する手法を提案する。
論文 参考訳(メタデータ) (2022-05-16T18:04:55Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Classification using Hyperdimensional Computing: A Review [16.329917143918028]
本稿では,HDコンピューティングの背景について紹介し,データ表現,データ変換,類似度測定について概説する。
評価の結果、HDコンピューティングは文字、信号、画像の形でのデータを用いて問題に対処する上で大きな可能性を示唆している。
論文 参考訳(メタデータ) (2020-04-19T23:51:44Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
本稿では,効率よく適応的なコード駆動グラフを提案する。
自動エンコーダのコンテキストでデコードすることで更新される。
ベンチマークデータセットの実験は、最先端のハッシュ手法よりもフレームワークの方が優れていることを明らかに示しています。
論文 参考訳(メタデータ) (2020-02-27T05:58:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。