The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains
- URL: http://arxiv.org/abs/2403.18343v1
- Date: Wed, 27 Mar 2024 08:34:39 GMT
- Title: The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains
- Authors: Johannes Emmert, Ronald Mendez, Houman Mirzaalian Dastjerdi, Christopher Syben, Andreas Maier,
- Abstract summary: We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks.
Our approach introduces differentiable data fusion to estimate the state of distributed process steps.
By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters.
- Score: 3.79770624632814
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Industrial process optimization and control is crucial to increase economic and ecologic efficiency. However, data sovereignty, differing goals, or the required expert knowledge for implementation impede holistic implementation. Further, the increasing use of data-driven AI-methods in process models and industrial sensory often requires regular fine-tuning to accommodate distribution drifts. We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks to address these issues. Our approach introduces differentiable data fusion to estimate the state of distributed process steps and their dependence on input data. By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters or AI models respectively. The concept is demonstrated on a virtual machine park simulated in Unity, consisting of bulk material processes in plastic recycling.
Related papers
- Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Enabling Smart Retrofitting and Performance Anomaly Detection for a
Sensorized Vessel: A Maritime Industry Experience [0.21485350418225244]
This study presents a deep learning-driven anomaly detection system augmented with interpretable machine learning models.
We leverage a human-in-the-loop unsupervised process that involves utilizing standard and Long Short-Term Memory (LSTM) autoencoders.
We empirically evaluate the system using real data acquired from the vessel TUCANA and the results involve achieving over 80% precision and 90% recall with the LSTM model used in the process.
arXiv Detail & Related papers (2023-12-30T01:31:54Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - An adaptive human-in-the-loop approach to emission detection of Additive
Manufacturing processes and active learning with computer vision [76.72662577101988]
In-situ monitoring and process control in Additive Manufacturing (AM) allows the collection of large amounts of emission data.
This data can be used as input into 3D and 2D representations of the 3D-printed parts.
The aim of this paper is to propose an adaptive human-in-the-loop approach using Machine Learning techniques.
arXiv Detail & Related papers (2022-12-12T15:11:18Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
We investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent process.
We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN)
arXiv Detail & Related papers (2022-11-11T09:46:58Z) - Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization [0.0]
We introduce a novel mathematically sound method that integrates theoretical process models with interrelated minimal Hidden Markov Models.
Our method consolidates: (a) theoretical process models, (b) HMMs, (c) coupled nonnegative matrix-tensor factorizations, and (d) custom model selection.
arXiv Detail & Related papers (2022-10-03T16:19:27Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.