A Generative Approach for Production-Aware Industrial Network Traffic
Modeling
- URL: http://arxiv.org/abs/2211.06089v1
- Date: Fri, 11 Nov 2022 09:46:58 GMT
- Title: A Generative Approach for Production-Aware Industrial Network Traffic
Modeling
- Authors: Alessandro Lieto and Qi Liao and Christian Bauer
- Abstract summary: We investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent process.
We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN)
- Score: 70.46446906513677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The new wave of digitization induced by Industry 4.0 calls for ubiquitous and
reliable connectivity to perform and automate industrial operations. 5G
networks can afford the extreme requirements of heterogeneous vertical
applications, but the lack of real data and realistic traffic statistics poses
many challenges for the optimization and configuration of the network for
industrial environments. In this paper, we investigate the network traffic data
generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the
internal states of the machine, and model the network traffic as a production
state dependent stochastic process. The two-step model is proposed as follows:
first, we model the production process as a multi-state semi-Markov process,
then we learn the conditional distributions of the production state dependent
packet interarrival time and packet size with generative models. We compare the
performance of various generative models including variational autoencoder
(VAE), conditional variational autoencoder (CVAE), and generative adversarial
network (GAN). The numerical results show a good approximation of the traffic
arrival statistics depending on the production state. Among all generative
models, CVAE provides in general the best performance in terms of the smallest
Kullback-Leibler divergence.
Related papers
- The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks.
Our approach introduces differentiable data fusion to estimate the state of distributed process steps.
By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters.
arXiv Detail & Related papers (2024-03-27T08:34:39Z) - 5G Network Slicing: Analysis of Multiple Machine Learning Classifiers [0.0]
This paper assesses various machine learning techniques, including the logistic regression model, linear discriminant model, k-nearest neighbor's model, decision tree model, random forest model, SVC BernoulliNB model, and GaussianNB model, to investigate the accuracy and precision of each model on detecting network slices.
The report also gives an overview of 5G network slicing.
arXiv Detail & Related papers (2023-10-03T02:16:50Z) - Diffusion bridges vector quantized Variational AutoEncoders [0.0]
We show that our model is competitive with the autoregressive prior on the mini-Imagenet dataset.
Our framework also extends the standard VQ-VAE and enables end-to-end training.
arXiv Detail & Related papers (2022-02-10T08:38:12Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Variational Autoencoder Generative Adversarial Network for Synthetic
Data Generation in Smart Home [15.995891934245334]
We propose a Variational AutoEncoder Geneversarative Adrial Network (VAE-GAN) as a smart grid data generative model.
VAE-GAN is capable of learning various types of data distributions and generating plausible samples from the same distribution.
Experiments indicate that the proposed synthetic data generative model outperforms the vanilla GAN network.
arXiv Detail & Related papers (2022-01-19T02:30:25Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z) - Forecasting Industrial Aging Processes with Machine Learning Methods [0.0]
We evaluate a wider range of data-driven models, comparing some traditional stateless models to more complex recurrent neural networks.
Our results show that recurrent models produce near perfect predictions when trained on larger datasets.
arXiv Detail & Related papers (2020-02-05T13:06:44Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.