論文の概要: USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2209.10368v4
- Date: Thu, 2 May 2024 15:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 22:58:28.185443
- Title: USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
- Title(参考訳): USC: 自律運転における安全指向型3D物体検出器の空間制約の非競合化
- Authors: Brian Hsuan-Cheng Liao, Chih-Hong Cheng, Hasan Esen, Alois Knoll,
- Abstract要約: 自律運転における3次元物体検出器の安全性指向性能について考察する。
本稿では,単純だが重要な局所化要件を特徴付ける空間的制約 (USC) について述べる。
既存のモデルに対する安全性指向の微調整を可能にするために,定量的な測定値を共通損失関数に組み込む。
- 参考スコア(独自算出の注目度): 7.355977594790584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
- Abstract(参考訳): 自律運転における3次元物体検出器の安全性指向性能について考察する。
特に、大量の文献で示された印象的な結果にもかかわらず、開発者はこれらの学習ベースの知覚モデルの安全なデプロイを保証するのが難しいと感じることが多い。
安全志向の指標の欠如に起因する課題として,我々は,自律走行車から物体を完全に覆うことを要求する,単純かつ重要な位置決め要求を特徴付ける空間制約(USC)を非競合的に提示する。
遠近法と鳥眼図を用いて定式化した制約は,高得点の物体検出器を持つことで衝突のリスクが低くなるなど,定量的な測定によって自然に反映できる。
最後に、モデル評価を超えて、既存のモデルに対する安全性指向の微調整を可能にするために、定量的な測定値を共通の損失関数に組み込む。
nuScenesデータセットとクローズドループシミュレーションを用いた実験により、認識レベルでの安全性概念の考察は、精度以上のモデル性能を改善するだけでなく、実際のシステム安全性へのより直接的なリンクを可能にする。
関連論文リスト
- CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
カメラ映像から周囲の交通機関の事故を正確にかつ迅速に予測することは、自動運転車(AV)の安全性に不可欠である
本研究は, CRASH と呼ばれる, AV の新たな事故予測フレームワークを提案する。
オブジェクト検出、特徴抽出、オブジェクト認識モジュール、コンテキスト認識モジュール、多層融合の5つのコンポーネントをシームレスに統合する。
私たちのモデルは、平均精度(AP)や平均到達時間(mTTA)といった重要な評価指標において、既存のトップベースラインを超えています。
論文 参考訳(メタデータ) (2024-07-25T04:12:49Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Towards Stable 3D Object Detection [64.49059005467817]
安定度指数(SI)は3次元検出器の安定性を信頼度、ボックスの定位、範囲、方向で総合的に評価できる新しい指標である。
モデルの安定性向上を支援するため,予測一貫性学習(PCL)と呼ばれる,汎用的で効果的なトレーニング戦略を導入する。
PCLは本質的に、異なるタイムスタンプと拡張の下で同じオブジェクトの予測一貫性を促進し、検出安定性を向上させる。
論文 参考訳(メタデータ) (2024-07-05T07:17:58Z) - Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering [12.384452095533396]
ディープニューラルネットワーク(DNN)モデルは、自動運転システム(ADS)における物体検出に広く利用されている。
しかし、そのようなモデルは、重大な安全性に影響を及ぼす可能性のあるエラーを起こしやすい。
このようなエラーを検知することを目的とした検査・自己評価モデルは、ADSの安全な配置において最重要となる。
論文 参考訳(メタデータ) (2024-05-13T10:03:03Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Controllable Adversaries [94.84458417662407]
本稿では,新しい拡散制御型クローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
我々は,認知過程における敵対的項を通して,安全クリティカルなシナリオをシミュレートする新しい手法を開発した。
我々はNuScenesデータセットを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Safety Margins for Reinforcement Learning [74.13100479426424]
安全マージンを生成するためにプロキシ臨界度メトリクスをどのように活用するかを示す。
Atari 環境での APE-X と A3C からの学習方針に対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-07-25T16:49:54Z) - Evaluating Object (mis)Detection from a Safety and Reliability
Perspective: Discussion and Measures [1.8492669447784602]
本稿では,最も危険で運転決定に影響を及ぼす可能性が最も高い物体の正確な識別に報いる新しい物体検出手法を提案する。
我々は、最近の自律走行データセットnuScenesにモデルを適用し、9つの物体検出器を比較した。
その結果、いくつかの環境では、安全性と信頼性に重点を置いている場合、nuScenesランキングでベストに機能するオブジェクト検出器は好ましくないことが判明した。
論文 参考訳(メタデータ) (2022-03-04T09:31:20Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Scalable Synthesis of Verified Controllers in Deep Reinforcement
Learning [0.0]
高品質の安全シールドを合成できる自動検証パイプラインを提案します。
私たちの重要な洞察は、事前に計算された安全シールドを使用して神経コントローラのトレーニングを制限し、神経コントローラから安全検証を分離することを含みます。
実測的な高次元深部RLベンチマークによる実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-04-20T19:30:29Z) - Uncertainty-Aware Vehicle Orientation Estimation for Joint
Detection-Prediction Models [12.56249869551208]
オリエンテーションは、自律システムの下流モジュールにとって重要な特性である。
本稿では,既存のモデルを拡張し,共同物体検出と動き予測を行う手法を提案する。
さらに、この手法は予測の不確かさを定量化することができ、推定された向きが反転する確率を出力することができる。
論文 参考訳(メタデータ) (2020-11-05T21:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。