論文の概要: Towards Stable 3D Object Detection
- arxiv url: http://arxiv.org/abs/2407.04305v1
- Date: Fri, 5 Jul 2024 07:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:21:30.690747
- Title: Towards Stable 3D Object Detection
- Title(参考訳): 安定な3次元物体検出に向けて
- Authors: Jiabao Wang, Qiang Meng, Guochao Liu, Liujiang Yan, Ke Wang, Ming-Ming Cheng, Qibin Hou,
- Abstract要約: 安定度指数(SI)は3次元検出器の安定性を信頼度、ボックスの定位、範囲、方向で総合的に評価できる新しい指標である。
モデルの安定性向上を支援するため,予測一貫性学習(PCL)と呼ばれる,汎用的で効果的なトレーニング戦略を導入する。
PCLは本質的に、異なるタイムスタンプと拡張の下で同じオブジェクトの予測一貫性を促進し、検出安定性を向上させる。
- 参考スコア(独自算出の注目度): 64.49059005467817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, the temporal stability of 3D object detection greatly impacts the driving safety. However, the detection stability cannot be accessed by existing metrics such as mAP and MOTA, and consequently is less explored by the community. To bridge this gap, this work proposes Stability Index (SI), a new metric that can comprehensively evaluate the stability of 3D detectors in terms of confidence, box localization, extent, and heading. By benchmarking state-of-the-art object detectors on the Waymo Open Dataset, SI reveals interesting properties of object stability that have not been previously discovered by other metrics. To help models improve their stability, we further introduce a general and effective training strategy, called Prediction Consistency Learning (PCL). PCL essentially encourages the prediction consistency of the same objects under different timestamps and augmentations, leading to enhanced detection stability. Furthermore, we examine the effectiveness of PCL with the widely-used CenterPoint, and achieve a remarkable SI of 86.00 for vehicle class, surpassing the baseline by 5.48. We hope our work could serve as a reliable baseline and draw the community's attention to this crucial issue in 3D object detection. Codes will be made publicly available.
- Abstract(参考訳): 自律運転においては、3次元物体検出の時間的安定性は運転安全性に大きな影響を及ぼす。
しかし、検出安定性はmAPやMOTAといった既存のメトリクスではアクセスできないため、コミュニティによる調査は少ない。
このギャップを埋めるために、この研究は3次元検出器の安定性を信頼度、ボックスの定位、範囲、方向で総合的に評価できる新しい指標である安定性指数(SI)を提案する。
Waymo Open Datasetで最先端のオブジェクト検出器をベンチマークすることで、SIは他のメトリクスでこれまで発見されていなかったオブジェクト安定性の興味深い特性を明らかにする。
さらに,モデルの安定性向上を支援するため,予測一貫性学習(PCL)と呼ばれる,汎用的で効果的なトレーニング戦略を導入する。
PCLは本質的に、異なるタイムスタンプと拡張の下で同じオブジェクトの予測一貫性を促進し、検出安定性を向上させる。
さらに,PCLと広く使用されているCenterPointの有効性について検討し,車種別86.00の顕著なSIを実現し,ベースラインを5.48以上越えた。
私たちの仕事は信頼できるベースラインとして機能し、この重要な3Dオブジェクト検出問題にコミュニティの注意を引き付けることを願っています。
コードは公開されます。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
本研究は,現実シナリオ下での知覚システム評価において,精度と遅延とともに頑健性の重要性を強調した。
我々の研究は、カメラのみ、LiDARのみ、マルチモーダルな3Dオブジェクト検出アルゴリズムを広範囲に調査し、精度、レイテンシ、堅牢性の間のトレードオフを徹底的に評価する。
これらのうち、多モード3D検出手法は優れた堅牢性を示し、新しい分類法を導入し、文献を改良して明瞭性を高める。
論文 参考訳(メタデータ) (2024-01-12T12:35:45Z) - LS-VOS: Identifying Outliers in 3D Object Detections Using Latent Space
Virtual Outlier Synthesis [10.920640666237833]
LiDARベースの3Dオブジェクト検出器は、自動運転アプリケーションにおいて前例のないスピードと精度を達成した。
それらはしばしば、信頼度の高い予測や、実際のオブジェクトが存在しないリターン検出に偏っている。
LS-VOSは,3次元物体検出における外れ値の同定を行うフレームワークである。
論文 参考訳(メタデータ) (2023-10-02T07:44:26Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving [7.355977594790584]
自律運転における3次元物体検出器の安全性指向性能について考察する。
本稿では,単純だが重要な局所化要件を特徴付ける空間的制約 (USC) について述べる。
既存のモデルに対する安全性指向の微調整を可能にするために,定量的な測定値を共通損失関数に組み込む。
論文 参考訳(メタデータ) (2022-09-21T14:03:08Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Time-to-Label: Temporal Consistency for Self-Supervised Monocular 3D
Object Detection [46.077668660248534]
オブジェクトのポーズのレベルにおける時間的一貫性は、重要な監視信号を提供する、と我々は主張する。
具体的には、この一貫性とレンダリング・アンド・コンパレート・ロスを利用する自己教師付き損失を提案する。
我々は,実データから生成した擬似ラベルを用いて,合成訓練されたモノクル3次元物体検出モデルを微調整する。
論文 参考訳(メタデータ) (2022-03-04T08:55:49Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
不確実性は、認識システムのエラーに対処し、堅牢性を改善するのに役立ちます。
本稿では,SECOND検出器に不確実性レグレッションを追加することにより,目標追尾性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2020-11-04T21:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。