論文の概要: PREF: Predictability Regularized Neural Motion Fields
- arxiv url: http://arxiv.org/abs/2209.10691v2
- Date: Wed, 5 Apr 2023 19:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 18:03:43.122198
- Title: PREF: Predictability Regularized Neural Motion Fields
- Title(参考訳): PreF: 予測可能性の正規化ニューラルモーションフィールド
- Authors: Liangchen Song, Xuan Gong, Benjamin Planche, Meng Zheng, David
Doermann, Junsong Yuan, Terrence Chen, Ziyan Wu
- Abstract要約: ダイナミックなシーンで3Dの動きを知ることは、多くの視覚応用にとって不可欠である。
多視点設定における全ての点の運動を推定するために神経運動場を利用する。
予測可能な動きを正規化することを提案する。
- 参考スコア(独自算出の注目度): 68.60019434498703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowing the 3D motions in a dynamic scene is essential to many vision
applications. Recent progress is mainly focused on estimating the activity of
some specific elements like humans. In this paper, we leverage a neural motion
field for estimating the motion of all points in a multiview setting. Modeling
the motion from a dynamic scene with multiview data is challenging due to the
ambiguities in points of similar color and points with time-varying color. We
propose to regularize the estimated motion to be predictable. If the motion
from previous frames is known, then the motion in the near future should be
predictable. Therefore, we introduce a predictability regularization by first
conditioning the estimated motion on latent embeddings, then by adopting a
predictor network to enforce predictability on the embeddings. The proposed
framework PREF (Predictability REgularized Fields) achieves on par or better
results than state-of-the-art neural motion field-based dynamic scene
representation methods, while requiring no prior knowledge of the scene.
- Abstract(参考訳): ダイナミックなシーンで3dの動きを知ることは、多くの視覚アプリケーションにとって不可欠である。
最近の進歩は主に、人間のような特定の要素の活性を推定することに焦点を当てている。
本稿では,多視点環境における全点の動きを推定するために,神経運動場を利用する。
動的シーンからの動作をマルチビューデータでモデル化するのは,類似色点と時間変化色点のあいまいさのため困難である。
予測可能な動きを正規化することを提案する。
前のフレームからの動作が分かっている場合、近い将来の動作は予測可能であるべきである。
そこで我々は,まず遅延埋め込みに推定動作を条件付け,次に予測ネットワークを用いて埋め込みに予測可能性を適用することによって予測可能性正則化を提案する。
提案したフレームワーク PreF (Predictability Regularized Fields) は、最先端のニューラルモーション場に基づく動的シーン表現法よりも同等以上の結果が得られるが、シーンの事前の知識は不要である。
関連論文リスト
- Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
ニューラルネットワークによってパラメータ化された暗黙の運動場を学習し、同一領域内の新規点の動きを予測することを目的とする。
我々は、SIRENが提供する固有正則化を活用し、入力層を変更して時間的に滑らかな運動場を生成する。
実験では, 未知点軌道の予測におけるモデルの性能評価と, 変形を伴う時間メッシュアライメントへの応用について検討した。
論文 参考訳(メタデータ) (2024-06-05T21:02:10Z) - DEMOS: Dynamic Environment Motion Synthesis in 3D Scenes via Local
Spherical-BEV Perception [54.02566476357383]
本研究では,動的環境運動合成フレームワーク(DEMOS)を提案する。
次に、最終動作合成のために潜在動作を動的に更新する。
その結果,本手法は従来の手法よりも優れ,動的環境の処理性能も優れていた。
論文 参考訳(メタデータ) (2024-03-04T05:38:16Z) - HumanMAC: Masked Motion Completion for Human Motion Prediction [62.279925754717674]
人間の動き予測はコンピュータビジョンとコンピュータグラフィックスの古典的な問題である。
従来の効果はエンコーディング・デコード方式に基づく経験的性能を実現している。
本稿では,新しい視点から新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:34:59Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
歴史的ポーズシーケンスから人間の動きを予測することは、機械が人間と知的な相互作用を成功させるために不可欠である。
本研究では,様々なポーズ表現に関する詳細な研究を行い,その動作予測課題に対する効果に着目した。
AHMR(Attentive Hierarchical Motion Recurrent Network)と呼ばれる新しいRNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-30T10:45:22Z) - Learning to Predict Diverse Human Motions from a Single Image via
Mixture Density Networks [9.06677862854201]
本研究では,混合密度ネットワーク(MDN)モデルを用いて,単一画像から将来の人間の動きを予測する新しい手法を提案する。
MDNのマルチモーダルな性質は、既存のディープヒューマンモーション予測アプローチとは対照的に、様々な将来のモーション仮説の生成を可能にしている。
訓練されたモデルでは、入力として画像を直接取り、与えられた条件を満たす複数の可視運動を生成する。
論文 参考訳(メタデータ) (2021-09-13T08:49:33Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
本稿では,多様な動作予測と制御可能な動作予測のための統合された深部生成ネットワークを提案する。
標準ベンチマークデータセットであるHuman3.6MとHumanEva-Iの2つの実験は、我々のアプローチがサンプルの多様性と精度の両方において最先端のベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2021-08-19T00:58:00Z) - Panoptic Segmentation Forecasting [71.75275164959953]
我々の目標は、最近の観測結果から近い将来の予測を行うことです。
この予測能力、すなわち予測能力は、自律的なエージェントの成功に不可欠なものだと考えています。
そこで我々は,2成分モデルを構築した。一方のコンポーネントは,オードメトリーを予測して背景物の力学を学習し,他方のコンポーネントは検出された物の力学を予測する。
論文 参考訳(メタデータ) (2021-04-08T17:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。