論文の概要: mini-ELSA: using Machine Learning to improve space efficiency in Edge
Lightweight Searchable Attribute-based encryption for Industry 4.0
- arxiv url: http://arxiv.org/abs/2209.10896v1
- Date: Thu, 22 Sep 2022 10:08:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 14:02:06.876031
- Title: mini-ELSA: using Machine Learning to improve space efficiency in Edge
Lightweight Searchable Attribute-based encryption for Industry 4.0
- Title(参考訳): mini-ELSA: 産業用Edge Lightweight Searchable Attributeベースの暗号化における、機械学習による空間効率の向上
- Authors: Jawhara Aljabri, Anna Lito Michala, Jeremy Singer, Ioannis Vourganas
- Abstract要約: 以前の研究で、業界 4.0 をサポートするために新しいエッジ軽量検索属性ベースの暗号化(ELSA)法が提案された。
我々は,エッジでの実行に適した機械学習(ML)メソッドを統合することにより,ルックアップテーブルのサイズを最小化し,データレコードを要約することにより,ELSAを改善することを目指している。
その結果,ストレージ要件を21%削減し,実行時間を1.27倍改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In previous work a novel Edge Lightweight Searchable Attribute-based
encryption (ELSA) method was proposed to support Industry 4.0 and specifically
Industrial Internet of Things applications. In this paper, we aim to improve
ELSA by minimising the lookup table size and summarising the data records by
integrating Machine Learning (ML) methods suitable for execution at the edge.
This integration will eliminate records of unnecessary data by evaluating added
value to further processing. Thus, resulting in the minimization of both the
lookup table size, the cloud storage and the network traffic taking full
advantage of the edge architecture benefits. We demonstrate our mini-ELSA
expanded method on a well-known power plant dataset. Our results demonstrate a
reduction of storage requirements by 21% while improving execution time by
1.27x.
- Abstract(参考訳): 以前の研究で、産業用4.0、特に産業用IoTアプリケーションをサポートするために、Edge Lightweight Searchable Attributeベースの暗号化(ELSA)法が提案された。
本稿では,エッジでの実行に適した機械学習(ML)メソッドを統合することにより,ルックアップテーブルのサイズを最小化し,データレコードを要約することにより,ELSAの改善を目指す。
この統合は、さらなる処理に付加価値を評価することによって、不要なデータのレコードを削除する。
これにより、エッジアーキテクチャのメリットを最大限に活用して、ルックアップテーブルサイズ、クラウドストレージ、ネットワークトラフィックの両方を最小化することが可能になります。
我々は、よく知られた発電所のデータセット上で、ミニELSA拡張手法を実証した。
その結果,ストレージ要件を21%削減し,実行時間を1.27倍改善した。
関連論文リスト
- ScalingNote: Scaling up Retrievers with Large Language Models for Real-World Dense Retrieval [72.2676180980573]
大規模言語モデル(LLM)は、高密度検索のスケールアップに活用できる優れた性能を示した。
オンラインクエリ待ち時間を維持しながら、検索にLLMのスケーリング可能性を利用する2段階のScalingNoteを提案する。
両段階のスケーリング手法はエンド・ツー・エンドのモデルより優れており,産業シナリオにおけるLLMを用いた高密度検索のスケーリング法則を検証している。
論文 参考訳(メタデータ) (2024-11-24T09:27:43Z) - EasyRAG: Efficient Retrieval-Augmented Generation Framework for Automated Network Operations [24.142649256624082]
本稿では,自動ネットワーク操作のためのシンプルで軽量で効率的な検索拡張生成フレームワークであるEasyRAGを提案する。
私たちのフレームワークには3つの利点があります。
第2の方法は,BM25検索とBGE-Rerankerのリグレードから成り,どのモデルも微調整する必要がなく,最小限のVRAMを占有し,デプロイが容易で,高度にスケーラブルである。
最後のものは効率的な推論であり、我々は粗いランク付け、再ランク付け、生成プロセス全体の効率的な推論促進スキームを設計した。
論文 参考訳(メタデータ) (2024-10-14T09:17:43Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - EDGE-LLM: Enabling Efficient Large Language Model Adaptation on Edge Devices via Layerwise Unified Compression and Adaptive Layer Tuning and Voting [12.006890185810322]
本稿では,エッジデバイス上での安価かつ効率的なLLM適応を実現するために,Edge-LLMと呼ばれる計算およびメモリ効率の高いLLMチューニングフレームワークを提案する。
具体的には,レイヤワイド統一圧縮(LUC)技術を用いて,レイヤワイドプルーニング空間と量子化ビット幅ポリシを生成して計算オーバーヘッドを削減する,(2)バックプロパゲーション深さを減らしてメモリオーバーヘッドを削減する適応層チューニングと投票方式,(3)LUCが導入した不規則な計算パターンと適応層チューニングを補完するハードウェアスケジューリング戦略,の3つのコアコンポーネントを特徴とする。
論文 参考訳(メタデータ) (2024-06-22T06:51:47Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Robust Implementation of Retrieval-Augmented Generation on Edge-based Computing-in-Memory Architectures [26.183960625493807]
エッジデバイスにデプロイされる大規模言語モデル(LLM)は、微調整とパラメータの特定の部分の更新を通じて学習する。
Retrieval-Augmented Generation (RAG) は資源効率の高いLLM学習手法である。
本稿では,コンピューティング・イン・メモリ(CiM)アーキテクチャを用いてRAGを高速化する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T22:31:50Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - Efficient Architecture Search via Bi-level Data Pruning [70.29970746807882]
この研究は、DARTSの双方向最適化におけるデータセット特性の重要な役割を探求する先駆者となった。
我々は、スーパーネット予測力学を計量として活用する新しいプログレッシブデータプルーニング戦略を導入する。
NAS-Bench-201サーチスペース、DARTSサーチスペース、MobileNetのようなサーチスペースに関する総合的な評価は、BDPがサーチコストを50%以上削減することを検証する。
論文 参考訳(メタデータ) (2023-12-21T02:48:44Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Utilizing Domain Knowledge: Robust Machine Learning for Building Energy
Prediction with Small, Inconsistent Datasets [1.1081836812143175]
機械学習(ML)アプリケーションに対する膨大なデータ需要は、現在ボトルネックとなっている。
本稿では,先行知識とデータ駆動手法を組み合わせることで,データの依存性を大幅に低減する手法を提案する。
知識符号化データ駆動手法としてCBMLをエネルギー効率の高い建築工学の文脈で検討する。
論文 参考訳(メタデータ) (2023-01-23T08:56:11Z) - ezDPS: An Efficient and Zero-Knowledge Machine Learning Inference
Pipeline [2.0813318162800707]
我々は,新しい効率的かつゼロ知識の機械学習推論スキームであるezDPSを提案する。
ezDPSはzkMLパイプラインで、データを複数のステージで高精度に処理する。
ezDPSは,全測定値における一般的な回路ベース手法よりも1~3桁効率が高いことを示す。
論文 参考訳(メタデータ) (2022-12-11T06:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。