論文の概要: Developing, Evaluating and Scaling Learning Agents in Multi-Agent
Environments
- arxiv url: http://arxiv.org/abs/2209.10958v1
- Date: Thu, 22 Sep 2022 12:28:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 14:09:34.289032
- Title: Developing, Evaluating and Scaling Learning Agents in Multi-Agent
Environments
- Title(参考訳): マルチエージェント環境における学習エージェントの開発・評価・スケーリング
- Authors: Ian Gemp, Thomas Anthony, Yoram Bachrach, Avishkar Bhoopchand, Kalesha
Bullard, Jerome Connor, Vibhavari Dasagi, Bart De Vylder, Edgar
Duenez-Guzman, Romuald Elie, Richard Everett, Daniel Hennes, Edward Hughes,
Mina Khan, Marc Lanctot, Kate Larson, Guy Lever, Siqi Liu, Luke Marris, Kevin
R. McKee, Paul Muller, Julien Perolat, Florian Strub, Andrea Tacchetti,
Eugene Tarassov, Zhe Wang, Karl Tuyls
- Abstract要約: DeepMindのGame Theory & Multi-Agentチームは、マルチエージェント学習のいくつかの側面を研究している。
私たちのグループの重要な目的は、DeepMindのリソースと専門知識を深層強化学習に活用することにあります。
- 参考スコア(独自算出の注目度): 38.16072318606355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Game Theory & Multi-Agent team at DeepMind studies several aspects of
multi-agent learning ranging from computing approximations to fundamental
concepts in game theory to simulating social dilemmas in rich spatial
environments and training 3-d humanoids in difficult team coordination tasks. A
signature aim of our group is to use the resources and expertise made available
to us at DeepMind in deep reinforcement learning to explore multi-agent systems
in complex environments and use these benchmarks to advance our understanding.
Here, we summarise the recent work of our team and present a taxonomy that we
feel highlights many important open challenges in multi-agent research.
- Abstract(参考訳): deepmindのgame theory & multi-agentチームは、計算近似からゲーム理論の基本概念、リッチな空間環境における社会的ジレンマのシミュレーション、難しいチームコーディネーションタスクにおける3次元ヒューマノイドのトレーニングまで、マルチエージェント学習のいくつかの側面を研究している。
私たちのグループの重要な目的は、DeepMindで利用可能なリソースと専門知識を使って、複雑な環境でマルチエージェントシステムを探索し、これらのベンチマークを使用して理解を深めることです。
ここでは,我々のチームの最近の成果を要約し,マルチエージェント研究における多くの重要なオープン課題を浮き彫りにする分類法を紹介する。
関連論文リスト
- A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
マルチエージェント強化学習(MARL)アルゴリズムは、エージェント間の協調や競合を必要とする複雑なタスクに広く採用されている。
本稿では,様々な状態空間を固定サイズの入力に統一することで,MARLの伝達学習を可能にする新しいフレームワークを提案する。
スクラッチから学習するエージェントと比較して,他のシナリオから学んだ操作スキルを用いたマルチエージェント学習性能の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-02-13T02:48:18Z) - A Review of Cooperation in Multi-agent Learning [5.334450724000142]
マルチエージェント学習(MAL)における協調は、多くの分野の共通点におけるトピックである。
本稿では,マルチエージェント学習の基本概念,問題設定,アルゴリズムについて概説する。
論文 参考訳(メタデータ) (2023-12-08T16:42:15Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Multi-Agent Interplay in a Competitive Survival Environment [0.0]
この論文は、2022年、ローマ・サピエンザ大学の人工知能とロボティクスの修士号に対する著者の論文"Multi-Agent Interplay in a Competitive Survival Environment"の一部である。
論文 参考訳(メタデータ) (2023-01-19T12:04:03Z) - Deep Reinforcement Learning for Multi-Agent Interaction [14.532965827043254]
自律エージェント研究グループは、自律システム制御のための新しい機械学習アルゴリズムを開発した。
本稿では,現在進行中の研究ポートフォリオの概要を概説するとともに,今後の課題について論じる。
論文 参考訳(メタデータ) (2022-08-02T21:55:56Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
深層強化学習のための協調型マルチエージェント探索(CMAE)を提案する。
ゴールは正規化エントロピーに基づく手法により、複数の射影状態空間から選択される。
CMAEが様々なタスクのベースラインを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2021-07-23T20:06:32Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
本稿では,最も一般的なマルチエージェント問題表現とその主な課題について述べる。
これらの課題に対処する5つの研究領域を特定します。
我々は,マルチエージェント強化学習が成功するためには,これらの課題を学際的アプローチで解決することを提案する。
論文 参考訳(メタデータ) (2021-06-29T19:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。