論文の概要: A Review of Cooperation in Multi-agent Learning
- arxiv url: http://arxiv.org/abs/2312.05162v1
- Date: Fri, 8 Dec 2023 16:42:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 14:37:34.736256
- Title: A Review of Cooperation in Multi-agent Learning
- Title(参考訳): マルチエージェント学習における協調の展望
- Authors: Yali Du, Joel Z. Leibo, Usman Islam, Richard Willis, Peter Sunehag
- Abstract要約: マルチエージェント学習(MAL)における協調は、多くの分野の共通点におけるトピックである。
本稿では,マルチエージェント学習の基本概念,問題設定,アルゴリズムについて概説する。
- 参考スコア(独自算出の注目度): 5.334450724000142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cooperation in multi-agent learning (MAL) is a topic at the intersection of
numerous disciplines, including game theory, economics, social sciences, and
evolutionary biology. Research in this area aims to understand both how agents
can coordinate effectively when goals are aligned and how they may cooperate in
settings where gains from working together are possible but possibilities for
conflict abound. In this paper we provide an overview of the fundamental
concepts, problem settings and algorithms of multi-agent learning. This
encompasses reinforcement learning, multi-agent sequential decision-making,
challenges associated with multi-agent cooperation, and a comprehensive review
of recent progress, along with an evaluation of relevant metrics. Finally we
discuss open challenges in the field with the aim of inspiring new avenues for
research.
- Abstract(参考訳): マルチエージェント学習(mal:collaboration in multi-agent learning)は、ゲーム理論、経済学、社会科学、進化生物学を含む多くの分野の共通分野である。
この領域の研究は、エージェントが目標が整ったときに効果的に協調できる方法と、協力による利益が可能であり、紛争が起きる可能性がある設定で協力できる方法の両方を理解することを目的としている。
本稿では,マルチエージェント学習の基本概念,問題設定,アルゴリズムの概要について述べる。
これは強化学習、マルチエージェントシーケンシャルな意思決定、マルチエージェント協調に関連する課題、最近の進歩の包括的なレビュー、関連するメトリクスの評価を含んでいる。
最後に,この分野のオープンな課題を考察し,新たな研究道の開拓をめざして考察する。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
大規模言語モデル(LLM)によって駆動されるマルチエージェントシステムは、複雑なタスクを協調的に解決する有望な能力を示している。
この研究は、マルチエージェントコラボレーションにおける根本的な問題であるコンセンサス探索について考察する。
論文 参考訳(メタデータ) (2023-10-31T03:37:11Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Developing, Evaluating and Scaling Learning Agents in Multi-Agent
Environments [38.16072318606355]
DeepMindのGame Theory & Multi-Agentチームは、マルチエージェント学習のいくつかの側面を研究している。
私たちのグループの重要な目的は、DeepMindのリソースと専門知識を深層強化学習に活用することにあります。
論文 参考訳(メタデータ) (2022-09-22T12:28:29Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
我々はエージェントの行動差を定量化し、bfロールの多様性を通して政策パフォーマンスとの関係を構築する
MARLの誤差は, 役割多様性と強い関係を持つ3つの部分に分けられる。
分解された要因は3つの一般的な方向における政策最適化に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-06-01T04:58:52Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
深層強化学習のための協調型マルチエージェント探索(CMAE)を提案する。
ゴールは正規化エントロピーに基づく手法により、複数の射影状態空間から選択される。
CMAEが様々なタスクのベースラインを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2021-07-23T20:06:32Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
本稿では,最も一般的なマルチエージェント問題表現とその主な課題について述べる。
これらの課題に対処する5つの研究領域を特定します。
我々は,マルチエージェント強化学習が成功するためには,これらの課題を学際的アプローチで解決することを提案する。
論文 参考訳(メタデータ) (2021-06-29T19:53:15Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
深層多エージェント強化学習は、複雑な協調的な課題を解決することを約束している。
本稿では,共有型マルチエージェント強化学習の最適化と表現に多様性を導入することを目的とする。
提案手法は,Google Research Footballと超硬度StarCraft IIマイクロマネジメントタスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-06-04T00:55:03Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。