MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image
Translation
- URL: http://arxiv.org/abs/2209.11047v3
- Date: Wed, 29 Mar 2023 12:59:42 GMT
- Title: MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image
Translation
- Authors: Junyoung Seo, Gyuseong Lee, Seokju Cho, Jiyoung Lee, Seungryong Kim
- Abstract summary: We present a novel method for exemplar-based image translation, called matching interleaved diffusion models (MIDMs)
We formulate a diffusion-based matching-and-generation framework that interleaves cross-domain matching and diffusion steps in the latent space.
To improve the reliability of the diffusion process, we design a confidence-aware process using cycle-consistency to consider only confident regions.
- Score: 29.03892463588357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel method for exemplar-based image translation, called
matching interleaved diffusion models (MIDMs). Most existing methods for this
task were formulated as GAN-based matching-then-generation framework. However,
in this framework, matching errors induced by the difficulty of semantic
matching across cross-domain, e.g., sketch and photo, can be easily propagated
to the generation step, which in turn leads to degenerated results. Motivated
by the recent success of diffusion models overcoming the shortcomings of GANs,
we incorporate the diffusion models to overcome these limitations.
Specifically, we formulate a diffusion-based matching-and-generation framework
that interleaves cross-domain matching and diffusion steps in the latent space
by iteratively feeding the intermediate warp into the noising process and
denoising it to generate a translated image. In addition, to improve the
reliability of the diffusion process, we design a confidence-aware process
using cycle-consistency to consider only confident regions during translation.
Experimental results show that our MIDMs generate more plausible images than
state-of-the-art methods.
Related papers
- Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas [33.334956022229846]
We propose the Merge-Attend-Diffuse operator, which can be plugged into different types of pretrained diffusion models used in a joint diffusion setting.
Specifically, we merge the diffusion paths, reprogramming self- and cross-attention to operate on the aggregated latent space.
Our method maintains compatibility with the input prompt and visual quality of the generated images while increasing their semantic coherence.
arXiv Detail & Related papers (2024-08-28T09:22:32Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
This work presents a new score-decomposed diffusion model to explicitly optimize the tangled distributions during image generation.
We equalize the refinement parts of the score function and energy guidance, which permits multi-objective optimization on the manifold.
SDDM outperforms existing SBDM-based methods with much fewer diffusion steps on several I2I benchmarks.
arXiv Detail & Related papers (2023-08-04T06:21:57Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
We present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance.
Our model's adaptability allows it to be implemented with both image-fusion and latent-dif models.
Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
arXiv Detail & Related papers (2023-06-07T12:56:56Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
A domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images.
We propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL)
Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain.
arXiv Detail & Related papers (2023-05-30T04:09:47Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer.
It is often difficult to maintain the original content of the image during the reverse diffusion.
We present a novel diffusion-based unsupervised image translation method using disentangled style and content representation.
Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
arXiv Detail & Related papers (2022-09-30T06:44:37Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols.
Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation.
arXiv Detail & Related papers (2022-07-17T15:53:24Z) - Blended Latent Diffusion [18.043090347648157]
We present an accelerated solution to the task of local text-driven editing of generic images, where the desired edits are confined to a user-provided mask.
Our solution leverages a recent text-to-image Latent Diffusion Model (LDM), which speeds up diffusion by operating in a lower-dimensional latent space.
arXiv Detail & Related papers (2022-06-06T17:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.