Simulation-based inference of Bayesian hierarchical models while
checking for model misspecification
- URL: http://arxiv.org/abs/2209.11057v1
- Date: Thu, 22 Sep 2022 14:51:54 GMT
- Title: Simulation-based inference of Bayesian hierarchical models while
checking for model misspecification
- Authors: Florent Leclercq
- Abstract summary: This paper presents recent methodological advances to perform simulation-based inference ( SBI) of a general class of Bayesian hierarchical models (BHMs)
Our approach is based on a two-step framework. First, the latent function that appears as second layer of the BHM is inferred and used to diagnose possible model misspecification.
Second, target parameters of the trusted model are inferred via SBI. As a proof of concept, we apply our framework to a prey-predator model built upon the Lotka-Volterra equations and involving complex observational processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents recent methodological advances to perform
simulation-based inference (SBI) of a general class of Bayesian hierarchical
models (BHMs), while checking for model misspecification. Our approach is based
on a two-step framework. First, the latent function that appears as second
layer of the BHM is inferred and used to diagnose possible model
misspecification. Second, target parameters of the trusted model are inferred
via SBI. Simulations used in the first step are recycled for score compression,
which is necessary to the second step. As a proof of concept, we apply our
framework to a prey-predator model built upon the Lotka-Volterra equations and
involving complex observational processes.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - The Bayesian Context Trees State Space Model for time series modelling
and forecasting [8.37609145576126]
A hierarchical Bayesian framework is introduced for developing rich mixture models for real-valued time series.
At the top level, meaningful discrete states are identified as appropriately quantised values of some of the most recent samples.
At the bottom level, a different, arbitrary model for real-valued time series - a base model - is associated with each state.
arXiv Detail & Related papers (2023-08-02T02:40:42Z) - Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models [5.1986508753214915]
We introduce Sequential Neural Posterior Score Estimation, a score-based method for Bayesian inference in simulator-based models.
We embed the model into a sequential training procedure, which guides simulations using the current approximation of the posterior at the observation of interest.
We then validate our method, as well as its amortised, non-sequential, variant on several numerical examples, demonstrating comparable or superior performance to existing state-of-the-art methods.
arXiv Detail & Related papers (2022-10-10T17:45:37Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - Model Comparison in Approximate Bayesian Computation [0.456877715768796]
A common problem in natural sciences is the comparison of competing models in the light of observed data.
This framework relies on the calculation of likelihood functions which are intractable for most models used in practice.
I propose a new efficient method to perform Bayesian model comparison in ABC.
arXiv Detail & Related papers (2022-03-15T10:24:16Z) - On generative models as the basis for digital twins [0.0]
A framework is proposed for generative models as a basis for digital twins or mirrors of structures.
The proposal is based on the premise that deterministic models cannot account for the uncertainty present in most structural modelling applications.
arXiv Detail & Related papers (2022-03-08T20:34:56Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.