論文の概要: A Generalist Neural Algorithmic Learner
- arxiv url: http://arxiv.org/abs/2209.11142v1
- Date: Thu, 22 Sep 2022 16:41:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 12:32:24.956584
- Title: A Generalist Neural Algorithmic Learner
- Title(参考訳): 一般のニューラルネットワーク学習者
- Authors: Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou,
Mehdi Bennani, R\'obert Csord\'as, Andrew Dudzik, Matko Bo\v{s}njak, Alex
Vitvitskyi, Yulia Rubanova, Andreea Deac, Beatrice Bevilacqua, Yaroslav
Ganin, Charles Blundell, Petar Veli\v{c}kovi\'c
- Abstract要約: 我々は、幅広いアルゴリズムを実行することを学習できる単一のグラフニューラルネットワークプロセッサを構築している。
マルチタスク方式でアルゴリズムを効果的に学習できることを示す。
- 参考スコア(独自算出の注目度): 18.425083543441776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The cornerstone of neural algorithmic reasoning is the ability to solve
algorithmic tasks, especially in a way that generalises out of distribution.
While recent years have seen a surge in methodological improvements in this
area, they mostly focused on building specialist models. Specialist models are
capable of learning to neurally execute either only one algorithm or a
collection of algorithms with identical control-flow backbone. Here, instead,
we focus on constructing a generalist neural algorithmic learner -- a single
graph neural network processor capable of learning to execute a wide range of
algorithms, such as sorting, searching, dynamic programming, path-finding and
geometry. We leverage the CLRS benchmark to empirically show that, much like
recent successes in the domain of perception, generalist algorithmic learners
can be built by "incorporating" knowledge. That is, it is possible to
effectively learn algorithms in a multi-task manner, so long as we can learn to
execute them well in a single-task regime. Motivated by this, we present a
series of improvements to the input representation, training regime and
processor architecture over CLRS, improving average single-task performance by
over 20% from prior art. We then conduct a thorough ablation of multi-task
learners leveraging these improvements. Our results demonstrate a generalist
learner that effectively incorporates knowledge captured by specialist models.
- Abstract(参考訳): ニューラルアルゴリズム推論の基盤は、特に分布から一般化する方法で、アルゴリズム的なタスクを解く能力である。
近年、この分野の方法論的改善が急増しているが、主に専門モデルの構築に焦点を当てている。
スペシャリストモデルは、単一のアルゴリズムか、同じ制御フローバックボーンを持つアルゴリズムの集合のみを神経的に実行することができる。
ここでは、ソート、検索、動的プログラミング、パス探索、幾何といった、幅広いアルゴリズムを実行することができる単一のグラフニューラルネットワークプロセッサである、ジェネラリストニューラルネットワーク学習器を構築することに重点を置く。
我々はCLRSベンチマークを利用して、認識領域における最近の成功と同様に、一般のアルゴリズム学習者が知識を取り入れることで構築できることを実証的に示す。
つまり、シングルタスク環境でそれらをうまく実行できる限り、マルチタスクで効果的にアルゴリズムを学習することが可能である。
そこで本研究では,CLRSよりも入力表現,トレーニング機構,プロセッサアーキテクチャを改良し,従来の技術に比べて平均20%以上のパフォーマンス向上を実現した。
次に、これらの改善を活用するマルチタスク学習者の徹底的なアブレーションを行う。
本結果は,専門モデルによる知識を効果的に取り入れた一般学習者を示す。
関連論文リスト
- Training Neural Networks with Internal State, Unconstrained
Connectivity, and Discrete Activations [66.53734987585244]
真のインテリジェンスには、内部状態を管理するマシンラーニングモデルが必要だ。
このようなモデルのトレーニングに最も効果的なアルゴリズムは,まだ発見されていない。
このようなトレーニングアルゴリズムを2進アクティベーションと1つの重みの行列のみを持つアーキテクチャに適用する試みについて述べる。
論文 参考訳(メタデータ) (2023-12-22T01:19:08Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
ニューラルネットワークにおけるアルゴリズム発見は、時としてより複雑であることを示す。
単純な学習問題でさえ、驚くほど多様なソリューションを許容できることが示されています。
論文 参考訳(メタデータ) (2023-06-30T17:59:13Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
我々は、中間的監督に訴えることなく、入出力ペアからのみニューラルネットワーク推論を学ぶことに集中する。
我々は、アルゴリズムの軌跡にアクセスできることなく、モデルの中間計算を正規化できる自己教師対象を構築する。
CLRSic Algorithmic Reasoning Benchmarkのタスクにおいて,提案手法はトラジェクトリを教師する手法と競合することを示す。
論文 参考訳(メタデータ) (2023-06-23T09:57:44Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - Learning with Differentiable Algorithms [6.47243430672461]
この論文は、古典的なアルゴリズムとニューラルネットワークのような機械学習システムを組み合わせることを探求している。
この論文はアルゴリズムの監督という概念を定式化し、ニューラルネットワークがアルゴリズムから、あるいは、アルゴリズムと連動して学ぶことを可能にする。
さらに、この論文では、微分可能なソートネットワーク、微分可能なソートゲート、微分可能な論理ゲートネットワークなど、微分可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-01T17:30:00Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
アルゴリズムの学習表現は機械学習の新たな領域であり、ニューラルネットワークから古典的なアルゴリズムで概念をブリッジしようとしている。
本稿では,従来のアルゴリズムを包括するCLRS Algorithmic Reasoning Benchmarkを提案する。
我々のベンチマークは、ソート、探索、動的プログラミング、グラフアルゴリズム、文字列アルゴリズム、幾何アルゴリズムなど、様々なアルゴリズムの推論手順にまたがっている。
論文 参考訳(メタデータ) (2022-05-31T09:56:44Z) - The Information Geometry of Unsupervised Reinforcement Learning [133.20816939521941]
教師なしスキル発見(英語: Unsupervised skill discovery)とは、報酬関数にアクセスせずに一連のポリシーを学ぶアルゴリズムのクラスである。
教師なしのスキル発見アルゴリズムは、あらゆる報酬関数に最適なスキルを学習しないことを示す。
論文 参考訳(メタデータ) (2021-10-06T13:08:36Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Learning to Stop While Learning to Predict [85.7136203122784]
多くのアルゴリズムにインスパイアされたディープモデルは全ての入力に対して固定深度に制限される。
アルゴリズムと同様に、深いアーキテクチャの最適深さは、異なる入力インスタンスに対して異なるかもしれない。
本稿では, ステアブルアーキテクチャを用いて, この様々な深さ問題に対処する。
学習した深層モデルと停止ポリシーにより,多様なタスクセットのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-06-09T07:22:01Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
基本数学的操作をビルディングブロックとして使うだけで,完全な機械学習アルゴリズムを自動的に発見できることが示される。
汎用的な検索空間を通じて人間のバイアスを大幅に低減する新しいフレームワークを導入することでこれを実証する。
機械学習アルゴリズムをゼロから発見する上で、これらの予備的な成功は、この分野における有望な新しい方向性を示していると信じている。
論文 参考訳(メタデータ) (2020-03-06T19:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。