論文の概要: Improving Conversational Recommender System via Contextual and
Time-Aware Modeling with Less Domain-Specific Knowledge
- arxiv url: http://arxiv.org/abs/2209.11386v1
- Date: Fri, 23 Sep 2022 03:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 13:25:12.308735
- Title: Improving Conversational Recommender System via Contextual and
Time-Aware Modeling with Less Domain-Specific Knowledge
- Title(参考訳): ドメイン固有知識の少ない文脈・時間対応モデリングによる会話レコメンダシステムの改善
- Authors: Lingzhi Wang, Shafiq Joty, Wei Gao, Xingshan Zeng, Kam-Fai Wong
- Abstract要約: 文脈から内部知識を完全に発見・抽出することを提案する。
エンティティレベルとコンテキストレベルの両方の表現をキャプチャして、リコメンデーションのためのユーザの好みを共同でモデル化する。
我々のモデルは、外部知識の少ないほとんどの評価指標においてより良い性能を達成し、他の領域によく一般化する。
- 参考スコア(独自算出の注目度): 25.503407835218773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Recommender Systems (CRS) has become an emerging research
topic seeking to perform recommendations through interactive conversations,
which generally consist of generation and recommendation modules. Prior work on
CRS tends to incorporate more external and domain-specific knowledge like item
reviews to enhance performance. Despite the fact that the collection and
annotation of the external domain-specific information needs much human effort
and degenerates the generalizability, too much extra knowledge introduces more
difficulty to balance among them. Therefore, we propose to fully discover and
extract internal knowledge from the context. We capture both entity-level and
contextual-level representations to jointly model user preferences for the
recommendation, where a time-aware attention is designed to emphasize the
recently appeared items in entity-level representations. We further use the
pre-trained BART to initialize the generation module to alleviate the data
scarcity and enhance the context modeling. In addition to conducting
experiments on a popular dataset (ReDial), we also include a multi-domain
dataset (OpenDialKG) to show the effectiveness of our model. Experiments on
both datasets show that our model achieves better performance on most
evaluation metrics with less external knowledge and generalizes well to other
domains. Additional analyses on the recommendation and generation tasks
demonstrate the effectiveness of our model in different scenarios.
- Abstract(参考訳): 対話型レコメンデーションシステム(crs)は,一般的に生成モジュールとレコメンデーションモジュールで構成される対話型会話を通じてレコメンデーションを行うための新たな研究テーマとなっている。
crsの以前の作業は、パフォーマンスを高めるために項目レビューのような外部およびドメイン固有の知識を取り入れる傾向がある。
外部のドメイン固有の情報の収集とアノテーションは、多くの人的努力を必要とし、汎用性を縮退しているにもかかわらず、過剰な知識はそれらの間のバランスを難しくする。
そこで我々は,その文脈から内部知識を完全発見し,抽出することを提案する。
我々は、エンティティレベルの表現とコンテキストレベルの表現の両方をキャプチャして、リコメンデーションのためのユーザの好みを共同でモデル化する。
さらに、事前訓練されたBARTを使用して生成モジュールを初期化し、データの不足を軽減し、コンテキストモデリングを強化する。
一般的なデータセット(ReDial)の実験に加えて、モデルの有効性を示すマルチドメインデータセット(OpenDialKG)も含んでいます。
両データセットの実験により、我々のモデルは外部知識の少ないほとんどの評価指標においてより良い性能を達成し、他の領域によく一般化することが示された。
推薦タスクと生成タスクに関するさらなる分析は、モデルの有効性を異なるシナリオで示す。
関連論文リスト
- Making Recommender Systems More Knowledgeable: A Framework to Incorporate Side Information [5.033504076393256]
本稿では,商品別サイド情報をレコメンダシステムに組み込んでパフォーマンスを高めるための汎用フレームワークを提案する。
副次的な情報により、我々の推薦システムは最先端のモデルよりもかなりのマージンで優れていることを示す。
また、リコメンデータシステムで使用される注意機構を標準化し、モデル性能への影響を評価するために、新しいタイプの損失を提案する。
論文 参考訳(メタデータ) (2024-06-02T04:33:52Z) - Breaking the Barrier: Utilizing Large Language Models for Industrial
Recommendation Systems through an Inferential Knowledge Graph [19.201697767418597]
大規模言語モデルに基づく補完的知識強化推薦システム(LLM-KERec)を提案する。
アイテムとユーザ情報から統一された概念用語を抽出し、ユーザ意図の遷移をキャプチャし、新しいアイテムに適応する。
3つの業界データセットで実施された大規模な実験は、既存のアプローチと比較して、我々のモデルの大幅な性能向上を実証している。
論文 参考訳(メタデータ) (2024-02-21T12:22:01Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Improving Conversational Recommendation Systems via Bias Analysis and
Language-Model-Enhanced Data Augmentation [28.349599213528627]
会話レコメンデーションシステム(CRS)は,言語モデリング技術の進歩とともに注目されている研究分野である。
本研究では、CRSモデル開発のためのベンチマークデータセットを探索し、マルチターン相互作用に固有のフィードバックループから生じる潜在的なバイアスに対処する。
バイアスを緩和しながらモデル性能を向上させるための2つの新しい戦略「Once-Aug」と「PopNudge」を提案する。
論文 参考訳(メタデータ) (2023-10-25T16:11:55Z) - Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling [18.297332953450514]
本稿では、事前学習した言語モデルの意味理解機能を活用してパーソナライズされたレコメンデーションを生成するLANCERを提案する。
我々のアプローチは、言語モデルとレコメンデーションシステムの間のギャップを埋め、より人間的なレコメンデーションを生み出します。
論文 参考訳(メタデータ) (2023-09-19T08:54:47Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - C2-CRS: Coarse-to-Fine Contrastive Learning for Conversational
Recommender System [47.18484863699936]
本稿では,会話レコメンデータシステムのためのデータセマンティックフュージョンを改善するための,新しいコントラスト学習フレームワークを提案する。
提案手法では,まず異なるデータ信号から多粒度意味単位を抽出し,次に,関連した多形意味単位を粗い方法で整列させる。
2つの公開CRSデータセットを用いた実験により,提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2022-01-04T11:39:41Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Leveraging Historical Interaction Data for Improving Conversational
Recommender System [105.90963882850265]
アイテムと属性に基づく嗜好シーケンスを統合するための,新しい事前学習手法を提案する。
実世界の2つのデータセットの実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-19T03:43:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。