論文の概要: Meta-path Free Semi-supervised Learning for Heterogeneous Networks
- arxiv url: http://arxiv.org/abs/2010.08924v2
- Date: Wed, 6 Jan 2021 23:54:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 03:58:23.188010
- Title: Meta-path Free Semi-supervised Learning for Heterogeneous Networks
- Title(参考訳): 異種ネットワークのためのメタパスフリー半教師付き学習
- Authors: Shin-woo Park, Byung Jun Bae, Jinyoung Yeo, Seung-won Hwang
- Abstract要約: グラフニューラルネットワーク(GNN)はグラフの表現学習に広く使われており、ノード分類などのタスクにおいて優れたパフォーマンスを実現している。
本稿では,メタパスを除く異種グラフに対して,単純かつ効率的なグラフニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 16.641434334366227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been widely used in representation learning
on graphs and achieved superior performance in tasks such as node
classification. However, analyzing heterogeneous graph of different types of
nodes and links still brings great challenges for injecting the heterogeneity
into a graph neural network. A general remedy is to manually or automatically
design meta-paths to transform a heterogeneous graph into a homogeneous graph,
but this is suboptimal since the features from the first-order neighbors are
not fully leveraged for training and inference. In this paper, we propose
simple and effective graph neural networks for heterogeneous graph, excluding
the use of meta-paths. Specifically, our models focus on relaxing the
heterogeneity stress for model parameters by expanding model capacity of
general GNNs in an effective way. Extensive experimental results on six
real-world graphs not only show the superior performance of our proposed models
over the state-of-the-arts, but also demonstrate the potentially good balance
between reducing the heterogeneity stress and increasing the parameter size.
Our code is freely available for reproducing our results.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はグラフの表現学習に広く使われており、ノード分類などのタスクにおいて優れたパフォーマンスを実現している。
しかし、異なる種類のノードとリンクの異種グラフを分析することは、グラフニューラルネットワークに異種性を注入する上で大きな課題をもたらす。
一般的な治療法は、不均一グラフを均質グラフに変換するためのメタパスを手動または自動で設計することであるが、一階隣人の特徴がトレーニングや推論に完全に活用されないため、これは準最適である。
本稿では,メタパスを除く異種グラフに対して,単純かつ効率的なグラフニューラルネットワークを提案する。
具体的には,一般gnnのモデル容量を効果的に拡大することにより,モデルパラメータの異質性ストレスを緩和することに焦点を当てた。
6つの実世界のグラフに対する広範囲な実験結果から,提案モデルの性能は最先端モデルよりも優れているだけでなく,不均質性応力の低減とパラメータサイズの増大とのバランスの良さが示された。
私たちのコードは、結果の再生に自由に利用できます。
関連論文リスト
- Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
グラフニューラルネットワークは、隣人からの情報を集約することでノードを表現することを学ぶ。
いくつかの既存手法では、ノードの小さなサブセットをサンプリングし、GNNをもっと大きなグラフにスケールすることで、この問題に対処している。
本稿では,GNNのトレーニングに不可欠なノードの集合を識別する適応サンプリング手法であるGRAPESを紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:08:47Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - GCNH: A Simple Method For Representation Learning On Heterophilous
Graphs [4.051099980410583]
グラフニューラルネットワーク(GNN)は、ホモフィルグラフの学習に適している。
近年,異種グラフの性能向上を目的とした標準GNNアーキテクチャの拡張が提案されている。
ヘテロフィリィ(GCNH)のためのGCNを提案し,ヘテロフィリィシナリオとホモフィリィシナリオの両方に適用できる簡易かつ効果的なGNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-21T11:26:24Z) - RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs [26.191673964156585]
本稿では,大規模不均一グラフ表現学習のためのRelation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO)を提案する。
RHCOは最先端のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-11-20T04:45:04Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach [43.41163711340362]
本稿では, ヘテロフィリーグラフリワイアリング(Deep Heterophily Graph Rewiring, DHGR)という手法を提案する。
我々の知る限りでは、ヘテロフィリーグラフに対するグラフ再構成を研究する最初の研究である。
論文 参考訳(メタデータ) (2022-09-17T06:55:21Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Heterogeneous Graph Transformer [49.675064816860505]
Webスケールの不均一グラフモデリングのための不均一グラフ変換器(HGT)アーキテクチャ
動的ヘテロジニアスグラフを扱うために、HGTに相対時間符号化手法を導入する。
Web スケールのグラフデータを扱うため,ヘテロジニアスなミニバッチグラフサンプリングアルゴリズム--HGSampling--を設計し,効率的かつスケーラブルなトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-03T04:49:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。