Applications of Machine Learning in Chemical and Biological Oceanography
- URL: http://arxiv.org/abs/2209.11557v2
- Date: Mon, 29 May 2023 05:59:36 GMT
- Title: Applications of Machine Learning in Chemical and Biological Oceanography
- Authors: Balamurugan Sadaiappan, Preethiya Balakrishnan, Vishal CR, Neethu T
Vijayan, Mahendran Subramanian and Mangesh U Gauns
- Abstract summary: This review focuses on the use of machine learning in the field of chemical and biological oceanography.
In the prediction of global fixed nitrogen levels, partial carbon dioxide pressure, and other chemical properties, the application of ML is a promising tool.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) refers to computer algorithms that predict a meaningful
output or categorize complex systems based on a large amount of data. ML is
applied in various areas including natural science, engineering, space
exploration, and even gaming development. This review focuses on the use of
machine learning in the field of chemical and biological oceanography. In the
prediction of global fixed nitrogen levels, partial carbon dioxide pressure,
and other chemical properties, the application of ML is a promising tool.
Machine learning is also utilized in the field of biological oceanography to
detect planktonic forms from various images (i.e., microscopy, FlowCAM, and
video recorders), spectrometers, and other signal processing techniques.
Moreover, ML successfully classified the mammals using their acoustics,
detecting endangered mammalian and fish species in a specific environment. Most
importantly, using environmental data, the ML proved to be an effective method
for predicting hypoxic conditions and harmful algal bloom events, an essential
measurement in terms of environmental monitoring. Furthermore, machine learning
was used to construct a number of databases for various species that will be
useful to other researchers, and the creation of new algorithms will help the
marine research community better comprehend the chemistry and biology of the
ocean.
Related papers
- Searching for Novel Chemistry in Exoplanetary Atmospheres using Machine
Learning for Anomaly Detection [1.8434042562191815]
We advocate the application of machine learning (ML) techniques for anomaly (novelty) detection to exoplanet transit spectra.
We demonstrate the feasibility of two popular anomaly detection methods on a large public database of synthetic spectra.
arXiv Detail & Related papers (2023-08-15T07:19:54Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Vision meets algae: A novel way for microalgae recognization and health monitor [6.731844884087066]
This dataset includes images of different genus of algae and the same genus in different states.
We trained, validated and tested the TOOD, YOLOv5, YOLOv8 and variants of RCNN algorithms on this dataset.
The results showed both one-stage and two-stage object detection models can achieve high mean average precision.
arXiv Detail & Related papers (2022-11-14T17:11:15Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
Processes to Hypothesis Learning [0.0]
We discuss the basic principles of Bayesian active learning and illustrate its applications for scanning probe microscopes (SPMs)
These frameworks allow for the use of prior data, the discovery of specific functionalities as encoded in spectral data, and exploration of physical laws manifesting during the experiment.
arXiv Detail & Related papers (2022-05-30T23:01:41Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Unlocking the potential of deep learning for marine ecology: overview,
applications, and outlook [8.3226670069051]
This paper aims to bridge the gap between marine ecologists and computer scientists.
We provide insight into popular deep learning approaches for ecological data analysis in plain language.
We illustrate challenges and opportunities through established and emerging applications of deep learning to marine ecology.
arXiv Detail & Related papers (2021-09-29T21:59:16Z) - Species Distribution Modeling for Machine Learning Practitioners: A
Review [23.45438144166006]
Species Distribution Modeling (SDM) seeks to predict the spatial (and sometimes temporal) patterns of species occurrence.
Despite its considerable importance, SDM has received relatively little attention from the computer science community.
In particular, we introduce key SDM concepts and terminology, review standard models, discuss data availability, and highlight technical challenges and pitfalls.
arXiv Detail & Related papers (2021-07-03T17:50:34Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
Recent research showed the promise of machine learning tools for analyzing acoustic communication in nonhuman species.
We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales.
The technological capabilities developed are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.
arXiv Detail & Related papers (2021-04-17T18:39:22Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.