An Overview of Violence Detection Techniques: Current Challenges and
Future Directions
- URL: http://arxiv.org/abs/2209.11680v1
- Date: Wed, 21 Sep 2022 12:27:20 GMT
- Title: An Overview of Violence Detection Techniques: Current Challenges and
Future Directions
- Authors: Nadia Mumtaz, Naveed Ejaz, Shabana Habib, Syed Muhammad Mohsin, Prayag
Tiwari, Shahab S. Band, Neeraj Kumar
- Abstract summary: Violence Detection (VD) is used to analyze Big Video data for anomalous actions incurred due to humans.
This paper focuses on overview of deep sequence learning approaches along with localization strategies of the detected violence.
- Score: 8.978422921103617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Big Video Data generated in today's smart cities has raised concerns from
its purposeful usage perspective, where surveillance cameras, among many others
are the most prominent resources to contribute to the huge volumes of data,
making its automated analysis a difficult task in terms of computation and
preciseness. Violence Detection (VD), broadly plunging under Action and
Activity recognition domain, is used to analyze Big Video data for anomalous
actions incurred due to humans. The VD literature is traditionally based on
manually engineered features, though advancements to deep learning based
standalone models are developed for real-time VD analysis. This paper focuses
on overview of deep sequence learning approaches along with localization
strategies of the detected violence. This overview also dives into the initial
image processing and machine learning-based VD literature and their possible
advantages such as efficiency against the current complex models.
Furthermore,the datasets are discussed, to provide an analysis of the current
models, explaining their pros and cons with future directions in VD domain
derived from an in-depth analysis of the previous methods.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos.
In the era of deep learning, a great variety of deep learning based methods are constantly emerging for the VAD task.
This review covers the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD.
arXiv Detail & Related papers (2024-09-09T07:31:16Z) - MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN.
Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models.
Our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches.
arXiv Detail & Related papers (2024-06-27T01:09:07Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
This survey provides an in-depth summary of the latest approaches that are based on recurrent models for sequential data processing.
The emerging picture suggests that there is room for thinking of novel routes, constituted by learning algorithms which depart from the standard Backpropagation Through Time.
arXiv Detail & Related papers (2024-06-13T12:51:22Z) - Video Anomaly Detection in 10 Years: A Survey and Outlook [10.143205531474907]
Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring.
This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches.
arXiv Detail & Related papers (2024-05-29T17:56:31Z) - Temporal DINO: A Self-supervised Video Strategy to Enhance Action
Prediction [15.696593695918844]
This paper introduces a novel self-supervised video strategy for enhancing action prediction inspired by DINO (self-distillation with no labels)
The experimental results showcase significant improvements in prediction performance across 3D-ResNet, Transformer, and LSTM architectures.
These findings highlight the potential of our approach in diverse video-based tasks such as activity recognition, motion planning, and scene understanding.
arXiv Detail & Related papers (2023-08-08T21:18:23Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - How Facial Features Convey Attention in Stationary Environments [0.0]
This paper aims to extend previous research on distraction detection by analyzing which visual features contribute most to predicting awareness and fatigue.
We utilized the open source facial analysis toolkit OpenFace in order to analyze visual data of subjects at varying levels of attentiveness.
arXiv Detail & Related papers (2021-11-29T20:11:57Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.