Video Anomaly Detection in 10 Years: A Survey and Outlook
- URL: http://arxiv.org/abs/2405.19387v2
- Date: Mon, 1 Jul 2024 02:31:53 GMT
- Title: Video Anomaly Detection in 10 Years: A Survey and Outlook
- Authors: Moshira Abdalla, Sajid Javed, Muaz Al Radi, Anwaar Ulhaq, Naoufel Werghi,
- Abstract summary: Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring.
This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches.
- Score: 10.143205531474907
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring. While numerous surveys focus on conventional VAD methods, they often lack depth in exploring specific approaches and emerging trends. This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches. A prominent feature of this review is the investigation of core challenges within the VAD paradigms including large-scale datasets, features extraction, learning methods, loss functions, regularization, and anomaly score prediction. Moreover, this review also investigates the vision language models (VLMs) as potent feature extractors for VAD. VLMs integrate visual data with textual descriptions or spoken language from videos, enabling a nuanced understanding of scenes crucial for anomaly detection. By addressing these challenges and proposing future research directions, this review aims to foster the development of robust and efficient VAD systems leveraging the capabilities of VLMs for enhanced anomaly detection in complex real-world scenarios. This comprehensive analysis seeks to bridge existing knowledge gaps, provide researchers with valuable insights, and contribute to shaping the future of VAD research.
Related papers
- Privacy-Preserving Video Anomaly Detection: A Survey [10.899433437231139]
Video Anomaly Detection (VAD) aims to automatically analyze patterns in surveillance videos collected from open spaces to detect anomalous events that may cause harm without physical contact.
The lack of transparency in video transmission and usage raises public concerns about privacy and ethics limiting the real-world application of VAD.
Recently, researchers have focused on privacy concerns in VAD by conducting systematic studies from various perspectives including data, features, and systems.
This article systematically reviews progress in P2VAD for the first time, defining its scope and providing an intuitive taxonomy.
arXiv Detail & Related papers (2024-11-21T20:29:59Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos.
In the era of deep learning, a great variety of deep learning based methods are constantly emerging for the VAD task.
This review covers the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD.
arXiv Detail & Related papers (2024-09-09T07:31:16Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL) provides reliable uncertainty estimation with minimal additional computation in a single forward pass.
We first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks.
We elaborate on its extensive applications across various machine learning paradigms and downstream tasks.
arXiv Detail & Related papers (2024-09-07T05:55:06Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary object detection (OVD) aims at seeking an optimal object detector capable of recognizing objects from both base and novel categories.
Recent advances leverage knowledge distillation to transfer insightful knowledge from pre-trained large-scale vision-language models to the task of object detection.
We present a novel OVD framework termed LBP to propose learning background prompts to harness explored implicit background knowledge.
arXiv Detail & Related papers (2024-06-01T17:32:26Z) - Generalized Video Anomaly Event Detection: Systematic Taxonomy and
Comparison of Deep Models [33.43062232461652]
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance systems.
This survey extends the conventional scope of VAD beyond unsupervised methods, encompassing a broader spectrum termed Generalized Video Anomaly Event Detection (GVAED)
arXiv Detail & Related papers (2023-02-10T07:11:37Z) - An Overview of Violence Detection Techniques: Current Challenges and
Future Directions [8.978422921103617]
Violence Detection (VD) is used to analyze Big Video data for anomalous actions incurred due to humans.
This paper focuses on overview of deep sequence learning approaches along with localization strategies of the detected violence.
arXiv Detail & Related papers (2022-09-21T12:27:20Z) - A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods [3.198144010381572]
This paper introduces the researchers of the field to a new perspective and reviews the recent deep-learning based semi-supervised video anomaly detection approaches.
Our goal is to help researchers develop more effective video anomaly detection methods.
arXiv Detail & Related papers (2021-11-02T14:00:33Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods.
We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges.
arXiv Detail & Related papers (2020-07-06T02:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.