Logarithmic entanglement scaling in dissipative free-fermion systems
- URL: http://arxiv.org/abs/2209.11706v3
- Date: Fri, 23 Dec 2022 16:36:46 GMT
- Title: Logarithmic entanglement scaling in dissipative free-fermion systems
- Authors: Antonio D'Abbruzzo, Vincenzo Alba, Davide Rossini
- Abstract summary: We study the quantum information spreading in one-dimensional free-fermion systems in the presence of localized thermal baths.
We employ a nonlocal Lindblad master equation to describe the system-bath interaction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum information spreading in one-dimensional free-fermion
systems in the presence of localized thermal baths. We employ a nonlocal
Lindblad master equation to describe the system-bath interaction, in the sense
that the Lindblad operators are written in terms of the Bogoliubov operators of
the closed system, and hence are nonlocal in space. The statistical ensemble
describing the steady state is written in terms of a convex combination of the
Fermi-Dirac distributions of the baths. Due to the singularity of the
free-fermion dispersion, the steady-state mutual information exhibits
singularities as a function of the system parameters. While the mutual
information generically satisfies an area law, at the singular points it
exhibits logarithmic scaling as a function of subsystem size. By employing the
Fisher-Hartwig theorem, we derive the prefactor of the logarithmic scaling,
which depends on the parameters of the baths and plays the role of an effective
"central charge". This is upper bounded by the central charge governing
ground-state entanglement scaling. We provide numerical checks of our results
in the paradigmatic tight-binding chain and the Kitaev chain.
Related papers
- Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Radiative transport in a periodic structure with band crossings [52.24960876753079]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Spin-1/2 XXZ chain coupled to two Lindblad baths: Constructing
nonequilibrium steady states from equilibrium correlation functions [0.28087862620958753]
We show that at weak driving, the nonequilibrium steady state in an open system can remarkably be constructed just on the basis of correlation functions numerically in the closed system.
We also point out potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems.
arXiv Detail & Related papers (2023-03-01T11:37:13Z) - Real-time broadening of bath-induced density profiles from closed-system
correlation functions [0.0]
We investigate the nonequilibrium dynamics of spin chains with a local coupling to a single Lindblad bath.
We show that closed and open approaches to quantum transport agree strictly.
arXiv Detail & Related papers (2022-10-19T13:09:23Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Entanglement Entropy of Fermions from Wigner Functions: Excited States
and Open Quantum Systems [0.0]
We provide an exact analytic formula for R'enyi and von-Neumann entanglement entropies of non-interacting open quantum systems.
We show that the entanglement entropy of a Fock state can scale either logarithmically or linearly with subsystem size.
We also use this formalism to describe entanglement dynamics of an open quantum system starting with a single domain wall at the center of the system.
arXiv Detail & Related papers (2020-06-29T18:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.