Physics-Informed Graph Neural Network for Spatial-temporal Production
Forecasting
- URL: http://arxiv.org/abs/2209.11885v1
- Date: Fri, 23 Sep 2022 23:28:40 GMT
- Title: Physics-Informed Graph Neural Network for Spatial-temporal Production
Forecasting
- Authors: Wendi Liu, Michael J. Pyrcz
- Abstract summary: Production forecast based on historical data provides essential value for developing hydrocarbon resources.
We propose a grid-free, physics-informed graph neural network (PI-GNN) for production forecasting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Production forecast based on historical data provides essential value for
developing hydrocarbon resources. Classic history matching workflow is often
computationally intense and geometry-dependent. Analytical data-driven models
like decline curve analysis (DCA) and capacitance resistance models (CRM)
provide a grid-free solution with a relatively simple model capable of
integrating some degree of physics constraints. However, the analytical
solution may ignore subsurface geometries and is appropriate only for specific
flow regimes and otherwise may violate physics conditions resulting in degraded
model prediction accuracy. Machine learning-based predictive model for time
series provides non-parametric, assumption-free solutions for production
forecasting, but are prone to model overfit due to training data sparsity;
therefore may be accurate over short prediction time intervals.
We propose a grid-free, physics-informed graph neural network (PI-GNN) for
production forecasting. A customized graph convolution layer aggregates
neighborhood information from historical data and has the flexibility to
integrate domain expertise into the data-driven model. The proposed method
relaxes the dependence on close-form solutions like CRM and honors the given
physics-based constraints. Our proposed method is robust, with improved
performance and model interpretability relative to the conventional CRM and GNN
baseline without physics constraints.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
We develop a model error correction for the European Centre for Medium-Range Weather Forecasts using a neural network.
The network is pre-trained offline using a large dataset of operational analyses and analysis increments.
It is then integrated into the IFS within the Object-Oriented Prediction System (OOPS) so as to be used in data assimilation and forecast experiments.
arXiv Detail & Related papers (2024-03-06T13:36:31Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Dynamic Graph Neural Network with Adaptive Edge Attributes for Air
Quality Predictions [12.336689498639366]
We propose a novel Dynamic Graph Neural Network with Adaptive Edge Attributes (DGN-AEA) on the message passing network.
Unlike prior information to establish edges, our method can obtain adaptive edge information through end-to-end training without any prior information.
arXiv Detail & Related papers (2023-02-20T13:45:55Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
This paper presents a practical workflow consisting of offline and online phases.
The offline phase includes training and building of an uncertain prior near-well geo-model.
The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data.
arXiv Detail & Related papers (2022-10-27T15:38:26Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models.
We propose a generative adversarial deep neural network (GAN) trained to reproduce geologically consistent 2D sections of fluvial successions.
In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit.
arXiv Detail & Related papers (2022-07-04T12:52:38Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.