Pulse length effects in long wavelength driven non-sequential double
ionization
- URL: http://arxiv.org/abs/2209.11983v1
- Date: Sat, 24 Sep 2022 11:35:54 GMT
- Title: Pulse length effects in long wavelength driven non-sequential double
ionization
- Authors: H. Jiang, M. Mandrysz, A. Sanchez, J. Dura, T. Steinle, J. S.
Prauzner-Bechcicki, J. Zakrzewski, M. Lewenstein, F. He, J. Biegert and M. F.
Ciappina
- Abstract summary: We present a joint experimental and theoretical study of non-sequential double ionization (N) in argon driven by a 3100-nm laser source.
The correlated photoelectron momentum distribution (PMD) shows a strong dependence on the pulse duration.
The evolution of the PMD can be explained by an envelope-induced intensity effect.
- Score: 0.12219666607838278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a joint experimental and theoretical study of non-sequential
double ionization (NSDI) in argon driven by a 3100-nm laser source. The
correlated photoelectron momentum distribution (PMD) shows a strong dependence
on the pulse duration, and the evolution of the PMD can be explained by an
envelope-induced intensity effect. Determined by the time difference between
tunneling and rescattering, the laser vector potential at the ionization time
of the bound electron will be influenced by the pulse duration, leading to
different drift momenta. Such a mechanism is extracted through a classical
trajectory Monte Carlo-based model and it can be further confirmed by quantum
mechanical simulations. This work sheds light on the importance of the pulse
duration in NSDI and improves our understanding of the strong field
tunnel-recollision dynamics under mid-IR laser fields.
Related papers
- Quantum pathways interference in laser-induced electron diffraction revealed by a semiclassical method [0.0]
We develop a novel method for strong-laser-field physics based on the combination of the semiclassical Herman-Kluk propagator and the strong-field approximation.
Our results can be used to extend current capabilities of the laser-induced electron diffraction and other ultrafast imaging and strong-field spectroscopic techniques.
arXiv Detail & Related papers (2024-08-22T20:23:37Z) - Asymmetric pulse effects on pair production in chirped electric fields [0.3370416330484179]
We investigate the effects of the asymmetric pulse shapes on electron-positron pair production in three distinct fields: chirp-free, small frequency chirp, and large frequency chirp fields via the real-time Dirac-Heisenberg-Wigner formalism.
Our findings reveal the disappearance of interference effects with shorter falling pulse length, and the peak is concentrated on the left side of the momentum spectrum.
arXiv Detail & Related papers (2024-01-30T13:41:08Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Tunneling ionization in ultrashort laser pulses: edge-effect and remedy [0.0]
Tunneling ionization of an atom in ultrashort laser pulses is considered.
Photoelectron momentum distribution (PMD) shows an edge-effect because of the photoelectron diffraction by the time-slit of the pulse.
arXiv Detail & Related papers (2022-01-19T13:23:01Z) - Quantum interference in strong-field ionization by a linearly polarized
laser pulse, and its relevance to tunnel exit time and momentum [0.0]
We investigate the liberation of an atomic electron by a linearly polarized single-cycle near-infrared laser pulse having a peak intensity that ensures tunneling.
Based on phase space analysis and energy distribution in the instantaneous potential, we reveal the importance of quantum interference between tunneling and over-the-barrier pathways of escape.
arXiv Detail & Related papers (2021-03-23T17:20:59Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Tracking the electronic oscillation in molecule with tunneling
microscopy [1.7117387510731599]
Visualizing and controlling electron dynamics over femtosecond timescale play a key role in the design of next-generation electronic devices.
We demonstrate the electronic oscillation inside the naphthalene molecule can be tracked by means of the tuning of delay time between two identical femtosecond laser pulses.
arXiv Detail & Related papers (2020-12-23T07:27:33Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.