論文の概要: Song Emotion Recognition: a Performance Comparison Between Audio
Features and Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2209.12045v1
- Date: Sat, 24 Sep 2022 16:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 17:42:54.244810
- Title: Song Emotion Recognition: a Performance Comparison Between Audio
Features and Artificial Neural Networks
- Title(参考訳): 歌の感情認識:音声特徴とニューラルネットワークの性能比較
- Authors: Karen Rosero, Arthur Nicholas dos Santos, Pedro Benevenuto Valadares,
Bruno Sanches Masiero
- Abstract要約: この問題に対処するために使用される最も一般的な特徴とモデルについて検討し、カペラの歌で感情を認識するのに適したものを明らかにする。
本稿では,この課題に対処するために,近年の出版物で用いられている最も一般的な特徴とモデルについて検討し,カペラ歌の感情認識に最も適しているものについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When songs are composed or performed, there is often an intent by the
singer/songwriter of expressing feelings or emotions through it. For humans,
matching the emotiveness in a musical composition or performance with the
subjective perception of an audience can be quite challenging. Fortunately, the
machine learning approach for this problem is simpler. Usually, it takes a
data-set, from which audio features are extracted to present this information
to a data-driven model, that will, in turn, train to predict what is the
probability that a given song matches a target emotion. In this paper, we
studied the most common features and models used in recent publications to
tackle this problem, revealing which ones are best suited for recognizing
emotion in a cappella songs.
- Abstract(参考訳): 歌が作曲されたり演奏されたりする場合、シンガーソングライターが感情や感情を表現するという意図がしばしばある。
人間にとって、作曲や演奏における感情と観衆の主観的知覚とを合わせることは極めて困難である。
幸いにも、この問題に対する機械学習のアプローチはシンプルだ。
通常、音声の特徴を抽出してデータ駆動モデルに提示するデータセットが必要であり、それによって、与えられた曲がターゲットの感情にマッチする確率を予測するように訓練される。
本稿では,近年の出版物で採用されている最も一般的な特徴とモデルについて検討し,カペラの歌における感情認識に最適な特徴を明らかにする。
関連論文リスト
- SongCreator: Lyrics-based Universal Song Generation [53.248473603201916]
SongCreatorは、声楽と伴奏の両方で曲を生成するという課題に取り組むために設計された曲生成システムである。
モデルには2つの新しいデザインがある: ボーカルの情報と伴奏を収録するための巧妙に設計された二重系列言語モデル (M) と、DSLMのための一連の注意マスク戦略である。
実験では,8つのタスクすべてに対して,最先端ないし競争的なパフォーマンスを実現することにより,SongCreatorの有効性を示す。
論文 参考訳(メタデータ) (2024-09-09T19:37:07Z) - Towards Explainable and Interpretable Musical Difficulty Estimation: A Parameter-efficient Approach [49.2787113554916]
音楽コレクションの整理には曲の難易度を推定することが重要である。
シンボリックな音楽表現の難易度推定には説明可能な記述子を用いる。
ピアノレパートリーで評価したアプローチは,平均2乗誤差(MSE)が1.7。
論文 参考訳(メタデータ) (2024-08-01T11:23:42Z) - Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach [0.0]
我々は,AIツールを用いて歌の感情的内容を操作する新しい方法を提案する。
私たちのゴールは、元のメロディをできるだけそのままにして、望ましい感情を達成することです。
この研究は、オンデマンドのカスタム音楽生成、既存の作品の自動リミックス、感情の進行に合わせて調整された音楽プレイリストに寄与する可能性がある。
論文 参考訳(メタデータ) (2024-06-12T20:12:29Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - Exploring and Applying Audio-Based Sentiment Analysis in Music [0.0]
音楽的感情を解釈する計算モデルの能力は、ほとんど解明されていない。
本研究は,(1)音楽クリップの感情を時間とともに予測し,(2)時系列の次の感情値を決定し,シームレスな遷移を保証することを目的とする。
論文 参考訳(メタデータ) (2024-02-22T22:34:06Z) - A Novel Multi-Task Learning Method for Symbolic Music Emotion
Recognition [76.65908232134203]
Symbolic Music Emotion Recognition(SMER)は、MIDIやMusicXMLなどのシンボリックデータから音楽の感情を予測すること。
本稿では、感情認識タスクを他の感情関連補助タスクに組み込む、SMERのためのシンプルなマルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-15T07:45:10Z) - Tracing Back Music Emotion Predictions to Sound Sources and Intuitive
Perceptual Qualities [6.832341432995627]
音楽感情認識は,音楽情報検索研究において重要な課題である。
より良いモデルに向けた重要なステップの1つは、モデルが実際にデータから学んでいるものを理解することである。
本研究では,高レベルの感情予測に結びつくスペクトル画像セグメントを用いて,モデル予測の説明を導出する方法を示す。
論文 参考訳(メタデータ) (2021-06-14T22:49:19Z) - Musical Prosody-Driven Emotion Classification: Interpreting Vocalists
Portrayal of Emotions Through Machine Learning [0.0]
音楽の韻律の役割は、いくつかの研究が韻律と感情の強い結びつきを示しているにもかかわらず、まだ解明されていない。
本研究では,従来の機械学習アルゴリズムの入力を音楽韻律の特徴に限定する。
我々は,ボーカリストの個人データ収集手法と,アーティスト自身による個人的根拠的真理ラベル付け手法を利用する。
論文 参考訳(メタデータ) (2021-06-04T15:40:19Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z) - Emotional Video to Audio Transformation Using Deep Recurrent Neural
Networks and a Neuro-Fuzzy System [8.900866276512364]
現在のアプローチは、音楽生成ステップにおけるビデオの感情的特徴を見落としている。
本稿では,適応型ニューロファジィ推論システムを用いて映像の感情を予測するハイブリッドディープニューラルネットワークを提案する。
我々のモデルは、両方のデータセットのビューアーから類似した感情を引き出すシーンにマッチする音声を効果的に生成できる。
論文 参考訳(メタデータ) (2020-04-05T07:18:28Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。