論文の概要: Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach
- arxiv url: http://arxiv.org/abs/2406.08623v1
- Date: Wed, 12 Jun 2024 20:12:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:07:36.988680
- Title: Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach
- Title(参考訳): 音楽による感情操作 - 深層学習型ビジュアルアプローチ
- Authors: Adel N. Abdalla, Jared Osborne, Razvan Andonie,
- Abstract要約: 我々は,AIツールを用いて歌の感情的内容を操作する新しい方法を提案する。
私たちのゴールは、元のメロディをできるだけそのままにして、望ましい感情を達成することです。
この研究は、オンデマンドのカスタム音楽生成、既存の作品の自動リミックス、感情の進行に合わせて調整された音楽プレイリストに寄与する可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Music evokes emotion in many people. We introduce a novel way to manipulate the emotional content of a song using AI tools. Our goal is to achieve the desired emotion while leaving the original melody as intact as possible. For this, we create an interactive pipeline capable of shifting an input song into a diametrically opposed emotion and visualize this result through Russel's Circumplex model. Our approach is a proof-of-concept for Semantic Manipulation of Music, a novel field aimed at modifying the emotional content of existing music. We design a deep learning model able to assess the accuracy of our modifications to key, SoundFont instrumentation, and other musical features. The accuracy of our model is in-line with the current state of the art techniques on the 4Q Emotion dataset. With further refinement, this research may contribute to on-demand custom music generation, the automated remixing of existing work, and music playlists tuned for emotional progression.
- Abstract(参考訳): 音楽は多くの人の感情を喚起します。
我々は,AIツールを用いて歌の感情的内容を操作する新しい方法を提案する。
私たちのゴールは、元のメロディをできるだけそのままにして、望ましい感情を達成することです。
そこで我々は,入力歌をダイメトリックに対立する感情に変換し,この結果をRusselのCircumplexモデルで可視化する対話型パイプラインを構築した。
我々のアプローチは、既存の音楽の感情的内容を変更することを目的とした新しい分野であるセマンティック・マニピュレーション・オブ・ミュージック(Semantic Manipulation of Music)のコンセプト実証である。
我々は、キーやSoundFontのインスツルメンテーション、その他の音楽的特徴に対する修正の精度を評価することができるディープラーニングモデルを設計する。
我々のモデルの精度は、現在の4Q Emotionデータセットの最先端技術とインラインで一致している。
さらなる改良により、この研究は、オンデマンドのカスタム音楽生成、既存の作品の自動リミックス、感情的な進行のために調整された音楽プレイリストに寄与する可能性がある。
関連論文リスト
- Audio-Driven Emotional 3D Talking-Head Generation [47.6666060652434]
本稿では,高精度な感情表現による高忠実・音声駆動型映像像の合成システムを提案する。
本研究では,無声音声入力に応答して自然なアイドル状態(非話者)ビデオを生成するポーズサンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-07T08:23:05Z) - A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - Bridging Paintings and Music -- Exploring Emotion based Music Generation through Paintings [10.302353984541497]
本研究では,視覚芸術で表現される感情に共鳴する音楽を生成するモデルを開発した。
コーディネートアートと音楽データの不足に対処するため、私たちはEmotion Painting Musicデータセットをキュレートした。
我々の2段階のフレームワークは、イメージを感情的内容のテキスト記述に変換し、これらの記述を音楽に変換することで、最小限のデータによる効率的な学習を容易にする。
論文 参考訳(メタデータ) (2024-09-12T08:19:25Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
感情音声変換(Emotional Voice Conversion)は、非感情成分を保存しながら、与えられた感情に応じて音声を操作することを目的とする。
本稿では,音声変換にインスタンスワイドな感情知識を活用する,意図に基づく対話型ディスタングネットワーク(AINN)を提案する。
論文 参考訳(メタデータ) (2023-12-29T08:06:45Z) - Are Words Enough? On the semantic conditioning of affective music
generation [1.534667887016089]
このスコーピングレビューは、感情によって条件付けられた音楽生成の可能性を分析し、議論することを目的としている。
本稿では,ルールベースモデルと機械学習モデルという,自動音楽生成において採用される2つの主要なパラダイムについて概観する。
音楽を通して感情を表現する言葉の限界とあいまいさを克服することは、創造産業に影響を及ぼす可能性があると結論付けている。
論文 参考訳(メタデータ) (2023-11-07T00:19:09Z) - REMAST: Real-time Emotion-based Music Arrangement with Soft Transition [29.34094293561448]
感情的な介入媒体としての音楽は、音楽療法、ゲーム、映画などのシナリオに重要な応用がある。
感情のリアルタイム適合とスムーズな遷移を同時に達成するためのREMASTを提案する。
評価結果によると,REMASTは客観的および主観的指標において最先端の手法を超越している。
論文 参考訳(メタデータ) (2023-05-14T00:09:48Z) - A Novel Multi-Task Learning Method for Symbolic Music Emotion
Recognition [76.65908232134203]
Symbolic Music Emotion Recognition(SMER)は、MIDIやMusicXMLなどのシンボリックデータから音楽の感情を予測すること。
本稿では、感情認識タスクを他の感情関連補助タスクに組み込む、SMERのためのシンプルなマルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-15T07:45:10Z) - Musical Prosody-Driven Emotion Classification: Interpreting Vocalists
Portrayal of Emotions Through Machine Learning [0.0]
音楽の韻律の役割は、いくつかの研究が韻律と感情の強い結びつきを示しているにもかかわらず、まだ解明されていない。
本研究では,従来の機械学習アルゴリズムの入力を音楽韻律の特徴に限定する。
我々は,ボーカリストの個人データ収集手法と,アーティスト自身による個人的根拠的真理ラベル付け手法を利用する。
論文 参考訳(メタデータ) (2021-06-04T15:40:19Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Emotional Video to Audio Transformation Using Deep Recurrent Neural
Networks and a Neuro-Fuzzy System [8.900866276512364]
現在のアプローチは、音楽生成ステップにおけるビデオの感情的特徴を見落としている。
本稿では,適応型ニューロファジィ推論システムを用いて映像の感情を予測するハイブリッドディープニューラルネットワークを提案する。
我々のモデルは、両方のデータセットのビューアーから類似した感情を引き出すシーンにマッチする音声を効果的に生成できる。
論文 参考訳(メタデータ) (2020-04-05T07:18:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。