VAESim: A probabilistic approach for self-supervised prototype discovery
- URL: http://arxiv.org/abs/2209.12279v1
- Date: Sun, 25 Sep 2022 17:55:31 GMT
- Title: VAESim: A probabilistic approach for self-supervised prototype discovery
- Authors: Matteo Ferrante, Tommaso Boccato, Simeon Spasov, Andrea Duggento,
Nicola Toschi
- Abstract summary: We propose an architecture for image stratification based on a conditional variational autoencoder.
We use a continuous latent space to represent the continuum of disorders and find clusters during training, which can then be used for image/patient stratification.
We demonstrate that our method outperforms baselines in terms of kNN accuracy measured on a classification task against a standard VAE.
- Score: 0.23624125155742057
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In medicine, curated image datasets often employ discrete labels to describe
what is known to be a continuous spectrum of healthy to pathological
conditions, such as e.g. the Alzheimer's Disease Continuum or other areas where
the image plays a pivotal point in diagnosis. We propose an architecture for
image stratification based on a conditional variational autoencoder. Our
framework, VAESim, leverages a continuous latent space to represent the
continuum of disorders and finds clusters during training, which can then be
used for image/patient stratification. The core of the method learns a set of
prototypical vectors, each associated with a cluster. First, we perform a soft
assignment of each data sample to the clusters. Then, we reconstruct the sample
based on a similarity measure between the sample embedding and the prototypical
vectors of the clusters. To update the prototypical embeddings, we use an
exponential moving average of the most similar representations between actual
prototypes and samples in the batch size. We test our approach on the
MNIST-handwritten digit dataset and on a medical benchmark dataset called
PneumoniaMNIST. We demonstrate that our method outperforms baselines in terms
of kNN accuracy measured on a classification task against a standard VAE (up to
15% improvement in performance) in both datasets, and also performs at par with
classification models trained in a fully supervised way. We also demonstrate
how our model outperforms current, end-to-end models for unsupervised
stratification.
Related papers
- Unsupervised Contrastive Analysis for Salient Pattern Detection using Conditional Diffusion Models [13.970483987621135]
Contrastive Analysis (CA) aims to identify patterns in images that allow distinguishing between a background (BG) dataset and a target (TG) dataset (i.e. unhealthy subjects)
Recent works on this topic rely on variational autoencoders (VAE) or contrastive learning strategies to learn the patterns that separate TG samples from BG samples in a supervised manner.
We employ a self-supervised contrastive encoder to learn a latent representation encoding only common patterns from input images, using samples exclusively from the BG dataset during training, and approximating the distribution of the target patterns by leveraging data augmentation techniques.
arXiv Detail & Related papers (2024-06-02T15:19:07Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Deep Variational Clustering Framework for Self-labeling of Large-scale
Medical Images [2.9617653204513656]
We propose a Deep Variational Clustering (DVC) framework for unsupervised representation learning and clustering of large-scale medical images.
In this approach, the probabilistic decoder helps to prevent the distortion of data points in the latent space and to preserve the local structure of data generating distribution.
Our experimental results show that our proposed framework generalizes better across different datasets.
arXiv Detail & Related papers (2021-09-22T15:01:52Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation [7.141405427125369]
We propose a generic semi-supervised learning framework for image segmentation based on a deep convolutional neural network (DCNN)
Our method is able to significantly improve beyond fully supervised model learning by incorporating unlabeled data.
arXiv Detail & Related papers (2020-04-16T23:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.