論文の概要: Spatiotemporal Multi-scale Bilateral Motion Network for Gait Recognition
- arxiv url: http://arxiv.org/abs/2209.12364v1
- Date: Mon, 26 Sep 2022 01:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 16:23:08.846613
- Title: Spatiotemporal Multi-scale Bilateral Motion Network for Gait Recognition
- Title(参考訳): 歩行認識のための時空間マルチスケールバイラテラル運動ネットワーク
- Authors: Xinnan Ding, Shan Du, Yu Zhang, and Kejun Wang
- Abstract要約: 本稿では,光学的流れに動機づけられた両動方向の特徴について述べる。
動作コンテキストを多段階の時間分解能でリッチに記述する多段階の時間表現を開発する。
- 参考スコア(独自算出の注目度): 3.1240043488226967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The critical goal of gait recognition is to acquire the inter-frame walking
habit representation from the gait sequences. The relations between frames,
however, have not received adequate attention in comparison to the intra-frame
features. In this paper, motivated by optical flow, the bilateral
motion-oriented features are proposed, which can allow the classic
convolutional structure to have the capability to directly portray gait
movement patterns at the feature level. Based on such features, we develop a
set of multi-scale temporal representations that force the motion context to be
richly described at various levels of temporal resolution. Furthermore, a
correction block is devised to eliminate the segmentation noise of silhouettes
for getting more precise gait information. Subsequently, the temporal feature
set and the spatial features are combined to comprehensively characterize gait
processes. Extensive experiments are conducted on CASIA-B and OU-MVLP datasets,
and the results achieve an outstanding identification performance, which has
demonstrated the effectiveness of the proposed approach.
- Abstract(参考訳): 歩行認識の重要な目標は、歩行シーケンスからフレーム間歩行習慣表現を取得することである。
しかし, フレーム間の関係は, フレーム内特徴に比べ, 十分に注目されていない。
本稿では,光学的流れを動機として,古典的畳み込み構造が特徴レベルでの歩行運動パターンを直接表現できる機能を持つような,左右の運動指向の特徴を提案する。
そこで,このような特徴に基づき,様々な時間分解能レベルにおいて,動きの文脈を豊かに記述する多スケールの時間表現を考案する。
さらに、より正確な歩行情報を得るためにシルエットのセグメンテーションノイズを除去して補正ブロックを考案する。
その後、時間的特徴集合と空間的特徴とを組み合わせ、総合的に歩行過程を特徴付ける。
CASIA-B と OU-MVLP のデータセットを用いて大規模な実験を行い,提案手法の有効性を実証した。
関連論文リスト
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
ゼロショットの人間の骨格に基づく行動認識は、トレーニング中に見られるカテゴリ外の行動を認識するモデルを構築することを目的としている。
従来の研究では、シーケンスの視覚的空間分布と意味的空間分布の整合性に焦点が当てられていた。
強固で頑健な表現を得るために,新たな損失関数サンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:53:01Z) - Motion-aware Latent Diffusion Models for Video Frame Interpolation [51.78737270917301]
隣接するフレーム間の動き推定は、動きのあいまいさを避ける上で重要な役割を担っている。
我々は、新しい拡散フレームワーク、動き認識潜在拡散モデル(MADiff)を提案する。
提案手法は,既存手法を著しく上回る最先端性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T05:09:56Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
我々は、連続するフレームから中間光の流れを直接推定する動き対応ビデオフレーム補間(MA-VFI)ネットワークを導入する。
受容場が異なる入力フレームからグローバルな意味関係と空間的詳細を抽出するだけでなく、必要な計算コストと複雑さを効果的に削減する。
論文 参考訳(メタデータ) (2024-02-05T11:00:14Z) - Wavelet-Decoupling Contrastive Enhancement Network for Fine-Grained
Skeleton-Based Action Recognition [8.743480762121937]
本稿ではウェーブレット・アテンション・デカップリング(WAD)モジュールを提案する。
また,コントラスト学習によるトラジェクティブ特徴に対する注意を高めるために,FCEモジュールを提案する。
提案手法は最先端の手法と競合して動作し,微粒な動作を適切に識別することができる。
論文 参考訳(メタデータ) (2024-02-03T16:51:04Z) - HiH: A Multi-modal Hierarchy in Hierarchy Network for Unconstrained Gait Recognition [3.431054404120758]
本稿では,階層型ネットワーク(HiH)におけるマルチモーダル階層(Hierarchy in Hierarchy Network)について述べる。
HiH は階層的なゲイト・デコンポザ・モジュールを用いてシルエットデータから一般的なゲイト・パターンの深度的およびモジュール内階層的な検証を行う主ブランチを特徴とする。
2次元関節配列に基づく補助枝は、歩行解析の空間的側面と時間的側面を豊かにする。
論文 参考訳(メタデータ) (2023-11-19T03:25:14Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - Modeling long-term interactions to enhance action recognition [81.09859029964323]
本稿では,フレームレベルと時間レベルの両方でオブジェクト間の相互作用のセマンティクスを利用する,エゴセントリックなビデオのアンダースタンドアクションに対する新しいアプローチを提案する。
ユーザの手とほぼ対応するプライマリ領域と、相互作用するオブジェクトに対応する可能性のあるセカンダリ領域のセットを入力として、領域ベースのアプローチを使用する。
提案手法は, 標準ベンチマークの動作認識において, 最先端技術よりも優れている。
論文 参考訳(メタデータ) (2021-04-23T10:08:15Z) - Sequential convolutional network for behavioral pattern extraction in
gait recognition [0.7874708385247353]
個人の歩行パターンを学習するための逐次畳み込みネットワーク(SCN)を提案する。
SCNでは、時系列の中間特徴写像を理解するために行動情報抽出器(BIE)を構築している。
SCNのマルチフレームアグリゲータは、モバイル3D畳み込み層を介して、長さが不確定なシーケンス上の機能統合を実行する。
論文 参考訳(メタデータ) (2021-04-23T08:44:10Z) - Multiple Object Tracking with Correlation Learning [16.959379957515974]
本研究では,局所相関モジュールを用いて,対象と周辺環境のトポロジカルな関係をモデル化する。
具体的には,各空間の位置とその文脈の密接な対応を確立し,自己教師付き学習を通じて相関量を明確に制約する。
提案手法は, 相関学習と優れた性能の相関学習の有効性を示し, MOT17では76.5%, IDF1では73.6%の最先端MOTAが得られる。
論文 参考訳(メタデータ) (2021-04-08T06:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。