Convergence of score-based generative modeling for general data
distributions
- URL: http://arxiv.org/abs/2209.12381v1
- Date: Mon, 26 Sep 2022 02:38:36 GMT
- Title: Convergence of score-based generative modeling for general data
distributions
- Authors: Holden Lee, Jianfeng Lu, Yixin Tan
- Abstract summary: We give convergence guarantees for denoising diffusion models that do not rely on the data distribution satisfying functional inequalities or strong smoothness assumptions.
We obtain Wasserstein distance guarantees for any distributions of bounded support or sufficiently decaying tails, as well as TV guarantees for distributions with further smoothness assumptions.
- Score: 9.953088581242845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give polynomial convergence guarantees for denoising diffusion models that
do not rely on the data distribution satisfying functional inequalities or
strong smoothness assumptions. Assuming a $L^2$-accurate score estimate, we
obtain Wasserstein distance guarantees for any distributions of bounded support
or sufficiently decaying tails, as well as TV guarantees for distributions with
further smoothness assumptions.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Probabilistic Matching of Real and Generated Data Statistics in Generative Adversarial Networks [0.6906005491572401]
We propose a method to ensure that the distributions of certain generated data statistics coincide with the respective distributions of the real data.
We evaluate the method on a synthetic dataset and a real-world dataset and demonstrate improved performance of our approach.
arXiv Detail & Related papers (2023-06-19T14:03:27Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Wasserstein Distributionally Robust Optimization via Wasserstein
Barycenters [10.103413548140848]
We seek data-driven decisions which perform well under the most adverse distribution from a nominal distribution constructed from data samples within a certain distance of probability distributions.
We propose constructing the nominal distribution in Wasserstein distributionally robust optimization problems through the notion of Wasserstein barycenter as an aggregation of data samples from multiple sources.
arXiv Detail & Related papers (2022-03-23T02:03:47Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Wasserstein Generative Learning of Conditional Distribution [6.051520664893158]
We propose a Wasserstein generative approach to learning a conditional distribution.
We establish non-asymptotic error bound of the conditional sampling distribution generated by the proposed method.
arXiv Detail & Related papers (2021-12-19T01:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.