Delayed Geometric Discounts: An Alternative Criterion for Reinforcement
Learning
- URL: http://arxiv.org/abs/2209.12483v1
- Date: Mon, 26 Sep 2022 07:49:38 GMT
- Title: Delayed Geometric Discounts: An Alternative Criterion for Reinforcement
Learning
- Authors: Firas Jarboui, Ahmed Akakzia
- Abstract summary: reinforcement learning (RL) proposes a theoretical background to learn optimal behaviors.
In practice, RL algorithms rely on geometric discounts to evaluate this optimality.
In this paper, we tackle these issues by generalizing the discounted problem formulation with a family of delayed objective functions.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The endeavor of artificial intelligence (AI) is to design autonomous agents
capable of achieving complex tasks. Namely, reinforcement learning (RL)
proposes a theoretical background to learn optimal behaviors. In practice, RL
algorithms rely on geometric discounts to evaluate this optimality.
Unfortunately, this does not cover decision processes where future returns are
not exponentially less valuable. Depending on the problem, this limitation
induces sample-inefficiency (as feed-backs are exponentially decayed) and
requires additional curricula/exploration mechanisms (to deal with sparse,
deceptive or adversarial rewards). In this paper, we tackle these issues by
generalizing the discounted problem formulation with a family of delayed
objective functions. We investigate the underlying RL problem to derive: 1) the
optimal stationary solution and 2) an approximation of the optimal
non-stationary control. The devised algorithms solved hard exploration problems
on tabular environment and improved sample-efficiency on classic simulated
robotics benchmarks.
Related papers
- Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning [18.579378919155864]
We propose Adaptive $Q$Network (AdaQN) to take into account the non-stationarity of the optimization procedure without requiring additional samples.
AdaQN is theoretically sound and empirically validate it in MuJoCo control problems and Atari $2600 games.
arXiv Detail & Related papers (2024-05-25T11:57:43Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - Assessment of Reinforcement Learning Algorithms for Nuclear Power Plant
Fuel Optimization [0.0]
This work presents a first-of-a-kind approach to utilize deep RL to solve the loading pattern problem and could be leveraged for any engineering design optimization.
arXiv Detail & Related papers (2023-05-09T23:51:24Z) - Open Problems in Applied Deep Learning [2.1320960069210475]
This work formulates the machine learning mechanism as a bi-level optimization problem.
The inner level optimization loop entails minimizing a properly chosen loss function evaluated on the training data.
The outer level optimization loop is less well-studied and involves maximizing a properly chosen performance metric evaluated on the validation data.
arXiv Detail & Related papers (2023-01-26T18:55:43Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Robust Predictable Control [149.71263296079388]
We show that our method achieves much tighter compression than prior methods, achieving up to 5x higher reward than a standard information bottleneck.
We also demonstrate that our method learns policies that are more robust and generalize better to new tasks.
arXiv Detail & Related papers (2021-09-07T17:29:34Z) - A Generalised Inverse Reinforcement Learning Framework [24.316047317028147]
inverse Reinforcement Learning (IRL) is to estimate the unknown cost function of some MDP base on observed trajectories.
We introduce an alternative training loss that puts more weights on future states which yields a reformulation of the (maximum entropy) IRL problem.
The algorithms we devised exhibit enhanced performances (and similar tractability) than off-the-shelf ones in multiple OpenAI gym environments.
arXiv Detail & Related papers (2021-05-25T10:30:45Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Towards Tractable Optimism in Model-Based Reinforcement Learning [37.51073590932658]
To be successful, an optimistic RL algorithm must over-estimate the true value function (optimism) but not by so much that it is inaccurate (estimation error)
We re-interpret these scalable optimistic model-based algorithms as solving a tractable noise augmented MDP.
We show that if this error is reduced, optimistic model-based RL algorithms can match state-of-the-art performance in continuous control problems.
arXiv Detail & Related papers (2020-06-21T20:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.