DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras
and Radars
- URL: http://arxiv.org/abs/2209.12729v2
- Date: Tue, 27 Sep 2022 09:11:34 GMT
- Title: DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras
and Radars
- Authors: Florian Drews, Di Feng, Florian Faion, Lars Rosenbaum, Michael Ulrich
and Claudius Gl\"aser
- Abstract summary: We propose a modular multi-modal architecture to fuse lidars, cameras and radars in different combinations for 3D object detection.
Specialized feature extractors take advantage of each modality and can be exchanged easily, making the approach simple and flexible.
Experimental results for lidar-camera, lidar-camera-radar and camera-radar fusion show the flexibility and effectiveness of our fusion approach.
- Score: 2.2166853714891057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose DeepFusion, a modular multi-modal architecture to fuse lidars,
cameras and radars in different combinations for 3D object detection.
Specialized feature extractors take advantage of each modality and can be
exchanged easily, making the approach simple and flexible. Extracted features
are transformed into bird's-eye-view as a common representation for fusion.
Spatial and semantic alignment is performed prior to fusing modalities in the
feature space. Finally, a detection head exploits rich multi-modal features for
improved 3D detection performance. Experimental results for lidar-camera,
lidar-camera-radar and camera-radar fusion show the flexibility and
effectiveness of our fusion approach. In the process, we study the largely
unexplored task of faraway car detection up to 225 meters, showing the benefits
of our lidar-camera fusion. Furthermore, we investigate the required density of
lidar points for 3D object detection and illustrate implications at the example
of robustness against adverse weather conditions. Moreover, ablation studies on
our camera-radar fusion highlight the importance of accurate depth estimation.
Related papers
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System [0.0]
We propose a novel approach to address the problem of camera and radar sensor fusion for 3D object detection in autonomous vehicle perception systems.
Our approach builds on recent advances in deep learning and leverages the strengths of both sensors to improve object detection performance.
Our results show that the proposed approach achieves superior performance over single-sensor solutions and could directly compete with other top-level fusion methods.
arXiv Detail & Related papers (2024-04-25T12:04:31Z) - ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3D multi-object tracking (MOT) is essential for an autonomous mobile agent to safely navigate a scene.
We aim to develop a 3D MOT framework that fuses camera and LiDAR sensor information.
arXiv Detail & Related papers (2023-10-04T02:17:59Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified Bird's-Eye
View Representation for 3D Object Detection [14.706717531900708]
LiDAR and camera are two essential sensors for 3D object detection in autonomous driving.
Recent methods focus on point-level fusion which paints the LiDAR point cloud with camera features in the perspective view.
We present SemanticBEVFusion to deeply fuse camera features with LiDAR features in a unified BEV representation.
arXiv Detail & Related papers (2022-12-09T05:48:58Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
Fusing LiDAR and camera information is essential for achieving accurate and reliable 3D object detection in autonomous driving systems.
Recent approaches aim at exploring the semantic densities of camera features through lifting points in 2D camera images into 3D space for fusion.
We propose a novel framework that focuses on the multi-scale progressive interaction of the multi-granularity LiDAR and camera features.
arXiv Detail & Related papers (2022-09-07T12:29:29Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
We propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization.
We design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution.
arXiv Detail & Related papers (2020-12-20T18:43:41Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.