Few-Shot Domain Adaptive Object Detection for Microscopic Images
- URL: http://arxiv.org/abs/2407.07633v1
- Date: Wed, 10 Jul 2024 13:11:58 GMT
- Title: Few-Shot Domain Adaptive Object Detection for Microscopic Images
- Authors: Sumayya Inayat, Nimra Dilawar, Waqas Sultani, Mohsen Ali,
- Abstract summary: Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data.
Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains.
Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment, and an instance-level classification loss.
- Score: 7.993453987882035
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, numerous domain adaptive strategies have been proposed to help deep learning models overcome the challenges posed by domain shift. However, even unsupervised domain adaptive strategies still require a large amount of target data. Medical imaging datasets are often characterized by class imbalance and scarcity of labeled and unlabeled data. Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data. Existing works struggle with randomly selected target domain images that may not accurately represent the real population, resulting in overfitting to small validation sets and poor generalization to larger test sets. Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains. To overcome these challenges, we propose a novel FSDAOD strategy for microscopic imaging. Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment to enhance similarity between class instances regardless of domain, and an instance-level classification loss applied in the middle layers of the object detector to enforce feature retention necessary for correct classification across domains. Extensive experimental results with competitive baselines demonstrate the effectiveness of our approach, achieving state-of-the-art results on two public microscopic datasets. Code available at https://github.co/intelligentMachinesLab/few-shot-domain-adaptive-microscopy
Related papers
- Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
We propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA)
The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation.
Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently.
arXiv Detail & Related papers (2023-08-25T10:22:13Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Cluster-Guided Semi-Supervised Domain Adaptation for Imbalanced Medical
Image Classification [10.92984910426756]
We develop a semi-supervised domain adaptation method, which has robustness to class-imbalanced situations.
For robustness, we propose a weakly-supervised clustering pipeline to obtain high-purity clusters.
The proposed method showed state-of-the-art performance in the experiment using severely class-imbalanced pathological image patches.
arXiv Detail & Related papers (2023-03-02T14:07:36Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Exploring Categorical Regularization for Domain Adaptive Object
Detection [27.348272177261233]
We propose a categorical regularization framework for domain adaptive object detection.
It can be applied as a plug-and-play component on a series of Adaptive Domain Faster R-CNN methods.
Our method obtains a significant performance gain over original Domain Adaptive Faster R-CNN detectors.
arXiv Detail & Related papers (2020-03-20T08:53:10Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training.
Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment.
We propose Forward-Backward Cyclic Adaptation, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing.
arXiv Detail & Related papers (2020-02-03T06:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.